[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mutual Information Based Extrinsic Similarity for Microarray Analysis

  • Conference paper
Bioinformatics and Computational Biology (BICoB 2009)

Abstract

Genes responding similarly to changing conditions are believed to be functionally related. Identification of such functional relations is crucial for annotation of unknown genes as well as the exploration of the underlying regulatory program. Gene expression profiling experiments provide noisy datasets about how cells respond to different experimental conditions. One way of analyzing these datasets is the identification of gene groups with similar expression patterns. A prevailing technique to find gene pairs with correlated expression profiles is to use linear measures like Pearson’s correlation coefficient or Euclidean distance. Similar genes are later compiled into a co-expression network to explore the system-level functionality of genes. However, the noise inherent in microarray datasets reduces the sensitivity of these measures and produces many spurious pairs with no real biological relevance. In this paper, we explore an extrinsic way of calculating similarity of two genes based on their relations with other genes. We show that ‘similar’ pairs identified by extrinsic measures overlap better with known biological annotations available in the Gene Ontology database. Our results also indicate that extrinsic measures are useful in enhancing the quality of co-expression networks and their functional subnetworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, U., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. 96, 6745–6750 (1999)

    Article  CAS  Google Scholar 

  2. Asur, S., Ucar, D., Parthasarathy, S.: An ensemble framework for clustering protein-protein interaction networks. In: Proc. 15th Annual Int’l Conference on Intelligent Systems for Molecular Biology (ISMB) (2007)

    Google Scholar 

  3. Bader, G., Hogue, C.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(2) (2003)

    Google Scholar 

  4. Carter, S., Brechbhler, C., Griffin, M., Bond, A.T.: Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20(14), 2242–2250 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Das, G., Mannila, H., Ronkainen, P.: Similarity of attributes by external probes. In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD 1998), pp. 23–29 (1998)

    Google Scholar 

  6. Das, G., Mannila, H., Ronkainen, P.: Similarity of attributes by external probes. Report C-1997-66, University of Helsinki, Department of Computer Science (October 1997)

    Google Scholar 

  7. Datta, S., Datta, S.: Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. BMC Bioinformatics 7(397) (2006)

    Google Scholar 

  8. Dhillon, I., Guan, Y., Kulis, B.: Weighted Graph Cuts without Eigenvectors: A Multilevel Approach. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1944–1957 (2007)

    Google Scholar 

  9. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95(25), 14863–14868 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hughes, T., et al.: Functional discovery via a compendium of expression profiles. Cell, 102 (2000)

    Google Scholar 

  11. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proc. Int’l Conf. Research in Computational Linguistics, ROCKLING X (1997)

    Google Scholar 

  12. Lee, H., Hsu, A., Sajdak, J., Qin, J., Pavlidis, P.: Coexpression analysis of human genes across many microarray data sets. Genome Research 14, 1085–1094 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin, D.: An information-theoretic definition of similarity. In: Proc. 15th Int’l Conf. Machine Learning (1998)

    Google Scholar 

  14. Marselos, M., Michalopoulos, G.: Changes in the pattern of aldehyde dehydrogenase activity in primary and metastatic adenocarcinomas of the human colon. Cancer letters 34(1), 27–37 (1987)

    Article  CAS  PubMed  Google Scholar 

  15. Näthke, I.: Cytoskeleton out of the cupboard: colon cancer and cytoskeletal changes induced by loss of apc. Nature Reviews Cancer 6, 967–974 (2006)

    Article  PubMed  Google Scholar 

  16. Oshimoto, H., Okamura, S., Yoshida, M., Mori, M.: Increased Activity and Expression of Phospholipase D2 in Human Colorectal Cancer

    Google Scholar 

  17. Ostel, B.: Statistics in research basic concepts and techniques for research workers. Iowa State University Press, Ames (1963)

    Google Scholar 

  18. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 1, pp. 448–453 (1995)

    Google Scholar 

  19. Palmer, C., Faloutsos, C.: Electricity based external similarity of categorical attributes. In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003. LNCS, vol. 2637. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Ravasz, E., et al.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Sevilla, J.L., et al.: Correlation between gene expression and go semantic similarity. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2(4) (2005)

    Google Scholar 

  22. Snel, B., Bork, P., Huynen, M.: The identification of functional modules from the genomic association of genes. Proc. Natl. Acad. Sci. 99, 5890–5895 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. PNAS 100(21) (2003)

    Google Scholar 

  24. Stuart, J., Segal, E., Koller, D., Kim, S.: A gene coexpression network for global discovery of conserved genetic modules. Science 302(5643), 249–255 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. Ucar, D., Altiparmak, F., Ferhatosmanoglu, H., Parthasarathy, S.: Investigating the use of extrinsic similarity measures for microarray analysis. In: Proceedings of the BIOKDD workshop at the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (2007)

    Google Scholar 

  26. Ucar, D., Asur, S., Catalyurek, U., Parthasarathy, S.: Improving Functional Modularity in Protein-Protein Interactions Graphs Using Hub-Induced Subgraphs. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS, vol. 4213, pp. 371–382. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Ucar, D., Neuhaus, I., Ross-MacDonald, P., Tilford, C., Parthasarathy, S., Siemers, N., Ji, R.: Construction of a reference gene association network from multiple profiling data: application to data analysis. Bioinformatics 23(20), 2716 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Q., Wang, X., Evers, B.: Induction of cIAP-2 in human colon cancer cells through PKC/NF-B. J. Biol. Chem. 278, 51091–51099 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, B., Horvath, S.: A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology 4(1) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ucar, D., Altiparmak, F., Ferhatosmanoglu, H., Parthasarathy, S. (2009). Mutual Information Based Extrinsic Similarity for Microarray Analysis. In: Rajasekaran, S. (eds) Bioinformatics and Computational Biology. BICoB 2009. Lecture Notes in Computer Science(), vol 5462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00727-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00727-9_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00726-2

  • Online ISBN: 978-3-642-00727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics