Abstract
Simulation techniques used to generate complex biological models are recognized as promising research tools especially in oncology. Here, we present a computer simulation model that uses an agent-based system to mimic the development and progression of solid tumors. The model includes influences of the tumor’s own features, the host immune response and level of tumor vascularization. The interactions among those complex systems were modeled using a multi-agent modeling environment provided by Netlogo. The model consists of a hierarchy of active objects including cancer cells, immune cells, and energy availability. The simulations conducted indicate the key importance of the nutrient needs of the tumor cells and of the initial responsiveness of the immune system in the tumor progression. Furthermore, the model strongly suggests that immunotherapy treatment will be efficient in individual with sustained immune responsiveness.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Komarova, N.L.: Mathematical modeling of tumorigenesis: mission possible. Curr. Opin. Oncol. 17, 39–43 (2005)
Grizzi, F., Russo, C., Colombo, P., Franceschini, B., Frezza, E.E., Cobos, E., Chiriva-Internati, M.: Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension. BMC Cancer 5, 1–14 (2005)
Kohandel, M., Kardar, M., Milosevic, M., Sivaloganathan, S.: Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies. Phys. Med. Biol. 52, 3665–3677 (2007)
Geromichalos, G.D.: Importance of molecular computer modeling in anticancer drug development. J. B. U. On. 12(suppl. 1), S101–S118 (2007)
Chaplain, M.A., McDougall, S.R., Anderson, A.R.: Mathematical modeling of tumor-induced angiogenesis. Annu. Rev. Biomed. Eng. 8, 233–257 (2006)
Gevertz, J.L., Torquato, S.: Modeling the effects of vasculature evolution on early brain tumor growth. J. Theor. Biol. 243, 517–531 (2006)
Iafolla, M.A., McMillen, D.R.: Extracting biochemical parameters for cellular modeling: A mean-field approach. J. Phys. Chem. B 110, 22019–22028 (2006)
Delsanto, P.P., Condat, C.A., Pugno, N., Gliozzi, A.S., Griffa, M.: A multilevel approach to cancer growth modeling. J. Theor. Biol. 250, 16–24 (2008)
Zhang, L., Athale, C.A., Deisboeck, T.S.: Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J. Theor. Biol. 244, 96–107 (2007)
Mantovani, A., Marchesi, F., Porta, C., Sica, A., Allavena, P.: Inflammation and cancer: breast cancer as a prototype. Breast 16(suppl. 2), S27–S33 (2007)
de Pillis, L.G., Gu, W., Radunskaya, A.E.: Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J. Theor. Biol. 238, 841–862 (2006)
Mallet, D.G., De Pillis, L.G.: A cellular automata model of tumor-immune system interactions. J. Theor. Biol. 239, 334–350 (2006)
Knowles, J., Loizidou, M., Taylor, I.: Endothelin-1 and angiogenesis in cancer. Curr. Vasc. Pharmacol. 3, 309–314 (2005)
Wilensky, U.: NetLogo, Center for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston, IL (1999), http://ccl.northwestern.edu/netlogo
De Pillis, L.G., Mallet, D.G., Radunskaya, A.E.: Spatial tumor-immune modeling. Computational and Mathematical Methods in medicine 7, 159–176 (2006)
Chen, K.C., Kim, J., Li, X., Lee, B.: Modeling recombinant immunotoxin efficacies in solid tumors. Ann. Biomed. Eng. 36, 486–512 (2008)
McGuire, B.J., Secomb, T.W.: A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand. J. Appl. Physiol. 91, 2255–2265 (2001)
Petrulio, C.A., Kim-Schulze, S., Kaufman, H.L.: The tumour microenvironment and implications for cancer immunotherapy. Expert Opin. Biol. Ther. 6, 671–684 (2006)
DeNardo, D.G., Johansson, M., Coussens, L.M.: Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev. 27, 11–18 (2008)
Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100, 57–70 (2000)
Neeson, P., Paterson, Y.: Effects of the tumor microenvironment on the efficacy of tumor immunotherapy. Immunol. Invest. 35, 359–394 (2006)
Grande, C., Firvida, J.L., Navas, V., Casal, J.: Interleukin-2 for the treatment of solid tumors other than melanoma and renal cell carcinoma. Anticancer Drugs 17, 1–12 (2006)
Mukherjee, P., Ginardi, A.R., Madsen, C.S., Sterner, C.J., Adriance, M.C., Tevethia, M.J., Gendler, S.J.: Mice with spontaneous pancreatic cancer naturally develop MUC-1-specific CTLs that eradicate tumors when adoptively transferred. J. Immunol. 165, 3451–3460 (2000)
Dewan, M.Z., Terunuma, H., Takada, M., Tanaka, Y., Abe, H., Sata, T., Toi, M., Yamamoto, N.: Role of natural killer cells in hormone-independent rapid tumor formation and spontaneous metastasis of breast cancer cells in vivo. Breast Cancer Res. Treat. 104, 267–275 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dréau, D., Stanimirov, D., Carmichael, T., Hadzikadic, M. (2009). An Agent-Based Model of Solid Tumor Progression. In: Rajasekaran, S. (eds) Bioinformatics and Computational Biology. BICoB 2009. Lecture Notes in Computer Science(), vol 5462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00727-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-00727-9_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00726-2
Online ISBN: 978-3-642-00727-9
eBook Packages: Computer ScienceComputer Science (R0)