[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Agent-Based Model of Solid Tumor Progression

  • Conference paper
Bioinformatics and Computational Biology (BICoB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5462))

Included in the following conference series:

  • 1347 Accesses

Abstract

Simulation techniques used to generate complex biological models are recognized as promising research tools especially in oncology. Here, we present a computer simulation model that uses an agent-based system to mimic the development and progression of solid tumors. The model includes influences of the tumor’s own features, the host immune response and level of tumor vascularization. The interactions among those complex systems were modeled using a multi-agent modeling environment provided by Netlogo. The model consists of a hierarchy of active objects including cancer cells, immune cells, and energy availability. The simulations conducted indicate the key importance of the nutrient needs of the tumor cells and of the initial responsiveness of the immune system in the tumor progression. Furthermore, the model strongly suggests that immunotherapy treatment will be efficient in individual with sustained immune responsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Komarova, N.L.: Mathematical modeling of tumorigenesis: mission possible. Curr. Opin. Oncol. 17, 39–43 (2005)

    Article  PubMed  Google Scholar 

  2. Grizzi, F., Russo, C., Colombo, P., Franceschini, B., Frezza, E.E., Cobos, E., Chiriva-Internati, M.: Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension. BMC Cancer 5, 1–14 (2005)

    Article  Google Scholar 

  3. Kohandel, M., Kardar, M., Milosevic, M., Sivaloganathan, S.: Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies. Phys. Med. Biol. 52, 3665–3677 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. Geromichalos, G.D.: Importance of molecular computer modeling in anticancer drug development. J. B. U. On. 12(suppl. 1), S101–S118 (2007)

    Google Scholar 

  5. Chaplain, M.A., McDougall, S.R., Anderson, A.R.: Mathematical modeling of tumor-induced angiogenesis. Annu. Rev. Biomed. Eng. 8, 233–257 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. Gevertz, J.L., Torquato, S.: Modeling the effects of vasculature evolution on early brain tumor growth. J. Theor. Biol. 243, 517–531 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. Iafolla, M.A., McMillen, D.R.: Extracting biochemical parameters for cellular modeling: A mean-field approach. J. Phys. Chem. B 110, 22019–22028 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. Delsanto, P.P., Condat, C.A., Pugno, N., Gliozzi, A.S., Griffa, M.: A multilevel approach to cancer growth modeling. J. Theor. Biol. 250, 16–24 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, L., Athale, C.A., Deisboeck, T.S.: Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J. Theor. Biol. 244, 96–107 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Mantovani, A., Marchesi, F., Porta, C., Sica, A., Allavena, P.: Inflammation and cancer: breast cancer as a prototype. Breast 16(suppl. 2), S27–S33 (2007)

    Article  Google Scholar 

  11. de Pillis, L.G., Gu, W., Radunskaya, A.E.: Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J. Theor. Biol. 238, 841–862 (2006)

    Article  PubMed  Google Scholar 

  12. Mallet, D.G., De Pillis, L.G.: A cellular automata model of tumor-immune system interactions. J. Theor. Biol. 239, 334–350 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Knowles, J., Loizidou, M., Taylor, I.: Endothelin-1 and angiogenesis in cancer. Curr. Vasc. Pharmacol. 3, 309–314 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Wilensky, U.: NetLogo, Center for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston, IL (1999), http://ccl.northwestern.edu/netlogo

  15. De Pillis, L.G., Mallet, D.G., Radunskaya, A.E.: Spatial tumor-immune modeling. Computational and Mathematical Methods in medicine 7, 159–176 (2006)

    Article  Google Scholar 

  16. Chen, K.C., Kim, J., Li, X., Lee, B.: Modeling recombinant immunotoxin efficacies in solid tumors. Ann. Biomed. Eng. 36, 486–512 (2008)

    Article  PubMed  Google Scholar 

  17. McGuire, B.J., Secomb, T.W.: A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand. J. Appl. Physiol. 91, 2255–2265 (2001)

    CAS  PubMed  Google Scholar 

  18. Petrulio, C.A., Kim-Schulze, S., Kaufman, H.L.: The tumour microenvironment and implications for cancer immunotherapy. Expert Opin. Biol. Ther. 6, 671–684 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. DeNardo, D.G., Johansson, M., Coussens, L.M.: Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev. 27, 11–18 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100, 57–70 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Neeson, P., Paterson, Y.: Effects of the tumor microenvironment on the efficacy of tumor immunotherapy. Immunol. Invest. 35, 359–394 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Grande, C., Firvida, J.L., Navas, V., Casal, J.: Interleukin-2 for the treatment of solid tumors other than melanoma and renal cell carcinoma. Anticancer Drugs 17, 1–12 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. Mukherjee, P., Ginardi, A.R., Madsen, C.S., Sterner, C.J., Adriance, M.C., Tevethia, M.J., Gendler, S.J.: Mice with spontaneous pancreatic cancer naturally develop MUC-1-specific CTLs that eradicate tumors when adoptively transferred. J. Immunol. 165, 3451–3460 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. Dewan, M.Z., Terunuma, H., Takada, M., Tanaka, Y., Abe, H., Sata, T., Toi, M., Yamamoto, N.: Role of natural killer cells in hormone-independent rapid tumor formation and spontaneous metastasis of breast cancer cells in vivo. Breast Cancer Res. Treat. 104, 267–275 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dréau, D., Stanimirov, D., Carmichael, T., Hadzikadic, M. (2009). An Agent-Based Model of Solid Tumor Progression. In: Rajasekaran, S. (eds) Bioinformatics and Computational Biology. BICoB 2009. Lecture Notes in Computer Science(), vol 5462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00727-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00727-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00726-2

  • Online ISBN: 978-3-642-00727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics