[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fast Optical Reconfiguration of a Nine-Context DORGA

  • Conference paper
Reconfigurable Computing: Architectures, Tools and Applications (ARC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5453))

Included in the following conference series:

Abstract

Demand for fast dynamic reconfiguration has increased since dynamic reconfiguration can accelerate the performance of implementation circuits. Such dynamic reconfiguration requires two important features: fast reconfiguration and numerous contexts. However, fast reconfigurations and numerous contexts share a trade-off relation on current VLSIs. Therefore, optically reconfigurable gate arrays (ORGAs) have been developed to resolve this dilemma. ORGAs can realize a large virtual gate count that is much larger than those of current VLSI chips by exploiting the large storage capacity of a holographic memory. Also, ORGAs can realize fast reconfiguration through use of large bandwidth optical connections between a holographic memory and a programmable gate array VLSI. Among such developments, we have been developing dynamic optically reconfigurable gate arrays (DORGAs) that realize a high gate density VLSI using a photodiode memory architecture. This paper presents the first demonstration of a nine-context DORGA architecture. Furthermore, this paper presents experimental results: 1.2-8.97μs reconfiguration times and 66-221μs retention times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altera Corporation, Altera Devices, http://www.altera.com

  2. Xilinx Inc., Xilinx Product Data Sheets, http://www.xilinx.com

  3. Lattice Semiconductor Corporation, LatticeECP and EC Family Data Sheet (2005), http://www.latticesemi.co.jp/products

  4. http://www.ipflex.co.jp

  5. Nakano, H., Shindo, T., Kazami, T., Motomura, M.: Development of dynamically reconfigurable processor LSI. NEC Tech. J (Japan) 56(4), 99–102 (2003)

    Google Scholar 

  6. Dehon, A.: Dynamically Programmable Gate Arrays: A Step Toward Increased Computational Density. In: Fourth Canadian Workshop on Field Programmable Devices, pp. 47–54 (1996)

    Google Scholar 

  7. Scalera, S.M., Vazquez, J.R.: The design and implementation of a context switching FPGA. In: IEEE symposium on FPGAs for Custom Computing Machines, pp. 78–85 (1998)

    Google Scholar 

  8. Trimberger, S., et al.: A Time–Multiplexed FPGA. In: FCCM, pp. 22–28 (1997)

    Google Scholar 

  9. Jones, D., Lewis, D.M.: A time–multiplexed FPGA architecture for logic emulation. In: Custom Integrated Circuits Conference, pp. 495–498 (1995)

    Google Scholar 

  10. Mumbru, J., Panotopoulos, G., Psaltis, D., An, X., Mok, F., Ay, S., Barna, S., Fossum, E.: Optically Programmable Gate Array. In: SPIE of Optics in Computing 2000, vol. 4089, pp. 763–771 (2000)

    Google Scholar 

  11. Mumbru, J., Zhou, G., An, X., Liu, W., Panotopoulos, G., Mok, F., Psaltis, D.: Optical memory for computing and information processing. In: SPIE on Algorithms, Devices, and Systems for Optical Information Processing III, vol. 3804, pp. 14–24 (1999)

    Google Scholar 

  12. Mumbru, J., Zhou, G., Ay, S., An, X., Panotopoulos, G., Mok, F., Psaltis, D.: Optically Reconfigurable Processors. In: SPIE Critical Review 1999 Euro-American Workshop on Optoelectronic Information Processing, vol. 74, pp. 265–288 (1999)

    Google Scholar 

  13. Watanabe, M., Kobayashi, F.: An Optically Differential Reconfigurable Gate Array using a 0.18 um CMOS process. In: IEEE International SOC Conference, pp. 281–284 (2004)

    Google Scholar 

  14. Watanabe, M., Shiki, T., Kobayashi, F.: 272 gate count optically differential reconfigurable gate array VLSI. In: International Conference on engineering of reconfigurable systems and algorithms (2007) (CD-ROM)

    Google Scholar 

  15. Watanabe, M., Kobayashi, F.: An optical reconfiguration circuit for optically reconfigurable Gate Arrays. In: 2004 IEEE International Midwest Symposium on Circuits and Systems, pp. I-529–I-532 (2004)

    Google Scholar 

  16. Watanabe, M., Kobayashi, F.: A 16,000-gate-count Optically Reconfigurable Gate Array in a standard 0.35um CMOS Technology. In: IEEE International Symposium on Circuits and Systems (2005)

    Google Scholar 

  17. Watanabe, M., Kobayashi, F.: A high-density optically reconfigurable gate array using dynamic method. In: International conference on Field-Programmable Logic and its Applications, pp. 261–269 (2004)

    Google Scholar 

  18. Watanabe, M., Kobayashi, F.: A dynamic optically reconfigurable gate array using dynamic method. In: International Workshop on Applied Reconfigurable Computing, pp. 50–58 (2005)

    Google Scholar 

  19. Watanabe, M., Kobayashi, F.: A 51,272-gate-count Dynamic Optically Reconfigurable Gate Array in a standard 0.35um CMOS Technology. In: International Conference on Solid State Devices and Materials, pp. 336–337 (2005)

    Google Scholar 

  20. Watanabe, M., Kobayashi, F.: A Dynamic Optically Reconfigurable Gate Array. Japanese Journal of Applied Physics 45(4B), 3510–3515 (2006)

    Article  Google Scholar 

  21. Seto, D., Watanabe, M.: Reconfiguration performance analysis of a dynamic@optically reconfigurable gate array architecture. In: IEEE International Conference on Field Programmable Technology, pp. 265–268 (2007)

    Google Scholar 

  22. Nakajima, M., Watanabe, M.: A 770ns holographic reconfiguration of a four-contexts DORGA. In: International Conference on engineering of reconfigurable systems and algorithms, pp. 289–292 (July 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakajima, M., Watanabe, M. (2009). Fast Optical Reconfiguration of a Nine-Context DORGA. In: Becker, J., Woods, R., Athanas, P., Morgan, F. (eds) Reconfigurable Computing: Architectures, Tools and Applications. ARC 2009. Lecture Notes in Computer Science, vol 5453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00641-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00641-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00640-1

  • Online ISBN: 978-3-642-00641-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics