[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Independent Component Analysis (ICA) Using Pearsonian Density Function

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5441))

  • 3335 Accesses

Abstract

Independent component analysis (ICA) is an important topic of signal processing and neural network which transforms an observed multidimensional random vector into components that are mutually as independent as possible. In this paper, we have introduced a new method called SwiPe-ICA (Stepwise Pearsonian ICA) that combines the methodology of projection pursuit with Pearsonian density estimation. Pearsonian density function instead of the classical polynomial density expansions is employed to approximate the density along each one-dimensional projection using differential entropy. This approximation of entropy is more exact than the classical approximation based on the polynomial density expansions when the source signals are supergaussian. The validity of the new algorithm is verified by computer simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hyvärinen, A.: Survey on independent component analysis. Neural Computing Surveys 2(94), 94–128 (1999)

    Google Scholar 

  2. Hyvärinen, A., Oja, E.: Independent component analysis: Algorithms and applications. Neural Networks 13(4), 411–430 (2000)

    Article  Google Scholar 

  3. Ziehe, A., Muller, K.R.: TDSEP–an efficient algorithm for blind separation using time structure. In: Proc. Int. Conf. on Artificial Neural Networks (ICANN 1998), pp. 675–680 (1998)

    Google Scholar 

  4. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)

    Article  Google Scholar 

  5. Pearson, E.S.: Some problems arising in approximating to probability distributions, using moments. Biometrika 50(1), 95–112 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  6. Solomon, H., Stephens, M.A.: Approximations to density functions using pearson curves. Journal of the American Statistical Association 73(361), 153–160 (1978)

    Article  Google Scholar 

  7. Karvanen, J., Eriksson, J., Koivunen, V.: Pearson System Based Method for Blind Separation. In: Proc. of  2nd International Workshop on Independent Component Analysis and Blind Signal Separation, pp. 585–590 (2000)

    Google Scholar 

  8. Cardoso, J.F., Comon, P.: Independent component analysis, a survey of some algebraic methods. In: ’Connecting the World’ 1996 IEEE International Symposium on Circuits and Systems, ISCAS 1996, vol. 2 (1996)

    Google Scholar 

  9. Pearson, K.: Mathematical Contributions to the Theory of Evolution. XIX. Second Supplement to a Memoir on Skew Variation. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 216, 429–457 (1916)

    Article  MATH  Google Scholar 

  10. Kendall, M., Stuart, A.: The advanced theory of statistics, 4th edn. Distribution theory, vol. 1. Griffin, London (1977)

    MATH  Google Scholar 

  11. Jomes, M.C., Sibson, R.: What is projection pursuit? J. of the Royal Statistical Society, Ser. A 150, 1–36 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Comon, P.: Independent component analysis: A new concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  13. Huber, P.J.: Projection pursuit. The Annals of Statistics 13(2), 435–475 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Amari, S., Cichocki, A., Yang, H.: A new learning algorithm for blind signal separation. Advances in neural information processing systems 8, 757–763 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mandal, A., Chakraborty, A. (2009). Independent Component Analysis (ICA) Using Pearsonian Density Function. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds) Independent Component Analysis and Signal Separation. ICA 2009. Lecture Notes in Computer Science, vol 5441. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00599-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00599-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00598-5

  • Online ISBN: 978-3-642-00599-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics