[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Relative Influence of Bottom-Up and Top-Down Attention

  • Conference paper
Attention in Cognitive Systems (WAPCV 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5395))

Included in the following conference series:

Abstract

Attention and memory are very closely related and their aim is to simplify the acquired data into an intelligent structured data set. Two main points are discussed in this paper. The first one is the presentation of a novel visual attention model for still images which includes both a bottom-up and a top-down approach. The bottom-up model is based on structures rarity within the image during the forgetting process. The top-down information uses mouse-tracking experiments to build models of a global behavior for a given kind of image. The proposed models assessment is achieved on a 91-image database. The second interesting point is that the relative importance of bottom-up and top-down attention depends on the specificity of each image. In unknown images the bottom-up influence remains very important while in specific kinds of images (like web sites) top-down attention brings the major information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hollingworth, A.: Constructing visual representations from natural scenes: The roles of short- and long-term visual memory. Journal of Experimental Psychology: Human Perception and Performance 30, 519–537 (2004)

    PubMed  Google Scholar 

  2. Chun, M.M., Jiang, Y.: Implicit, long-term spatial context memory. Journal of Experimental Psychology: Learning, Memory, & Cognition 29, 224–234 (2003)

    Google Scholar 

  3. Desimone, R.: Visual attention mediated by biased competition in extrastriate visual cortex. Phil. Trans. R. Soc. Lond. B 353, 1245–1255 (1998)

    Article  CAS  Google Scholar 

  4. Boynton, G.M.: Attention and visual perception. Current Opinion in Neurobiology 15, 465–469 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. Itti, L., Koch, C., Niebur, E.: Model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  6. Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40, 1489–1506 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. Itti, L., Koch, C.: Computational modeling of visual attention. Nature RevNeuroscience 2(3), 194–203 (2001)

    CAS  Google Scholar 

  8. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4(4), 219–270 (1985)

    CAS  PubMed  Google Scholar 

  9. Milanese, R., Bost, J.M., Pun, T.: A bottom-up attention system for active vision. In: ECAI 1992, 10th European Conference on Artificial Intelligence, pp. 808–810 (1992)

    Google Scholar 

  10. Milanese, R.: Detecting salient regions in an image: from biological evidence to computer implementation. PhD Thesis, University of Geneva (1993)

    Google Scholar 

  11. Chauvin, A., Herault, J., Marendaz, C., Peyrin, C.: Natural scene perception: visual attractors and image processing. In: 7th Neural Computation and Psychology Workshop (2000)

    Google Scholar 

  12. Petkov, N., Westenberg, M.A.: Suppression of contour perception by band-limited noise and its relation to non-classical receptive field inhibition. Biological Cybernetics 88, 236–246 (2003)

    Article  PubMed  Google Scholar 

  13. Le Meur, O.: Attention sélective en visualisation d’images fixes et animées affichées sur écran: Modèles et évaluation des performances – Applications. PhD Thesis, University of Nantes (2005)

    Google Scholar 

  14. Le Meur, O., Le Callet, P., Barba, D.: A spatio-temporal model of bottom-up visual selective attention: description and assessment. Vision Research (2007)

    Google Scholar 

  15. Mudge, T.N., Turney, J.L., Volz, R.A.: Automatic generation of salient features for the recognition of partially occluded parts. Robotica 5, 117–127 (1987)

    Article  Google Scholar 

  16. Osberger, W., Maeder, A.J.: Automatic identification of perceptually important regions in an image. In: 14th IEEE Int. Conference on Pattern Recognition (1998)

    Google Scholar 

  17. Walker, K.N., Cootes, T.F., Taylor, C.J.: Locating Salient Object Features. In: British Machine Vision Conference (1998)

    Google Scholar 

  18. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision 43(3), 145–175 (2001)

    Article  Google Scholar 

  19. Oliva, A., Torralba, A., Castelhano, M.S., Henderson, J.M.: Top-down control of visual attention in object detection. In: IEEE International Conference on Image Processing (2003)

    Google Scholar 

  20. Bruce, N., Jernigan, E.: Evolutionary design of context-free attentional operators. In: Proc. of the IEEE International Conference on Image Processing (2003)

    Google Scholar 

  21. Bruce, N., Tsotsos, J.K.: Saliency Based on Information Maximization. In: Proc. of the Neural Information Processing Systems (2005)

    Google Scholar 

  22. Liu, F., Gleicher, M.: Video Retargeting: Automating Pan-and-Scan. ACM Multimedia (2006)

    Google Scholar 

  23. Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Trans. Pattern Analysis Machine Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  24. Itti, L., Baldi, P.: Bayesian Surprise Attracts Human Attention. In: Advances in Neural Information Processing Systems (NIPS 2005), vol. 19, pp. 1–8. MIT Press, Cambridge (2006)

    Google Scholar 

  25. Stentiford, F.W.M.: An estimator for visual attention through competitive novelty with application to image compression. In: Picture Coding Symposium, pp. 25–27 (2001)

    Google Scholar 

  26. Boiman, O., Irani, M.: Detecting Irregularities in Images and in Video. In: International Conference on Computer Vision (ICCV) (2005)

    Google Scholar 

  27. Boiman, O., Irani, M.: Similarity by Composition. In: Neural Information Processing Systems (NIPS) (2006)

    Google Scholar 

  28. Mancas, M., Mancas-Thillou, C., Gosselin, B., Macq, B.: A rarity-based visual attention map - application to texture description. In: Proc. of IEEE International conference on Image Processing (ICIP) (2006)

    Google Scholar 

  29. Mancas, M., Gosselin, B., Macq, B.: A Three-Level Computational Attention Model. In: Proceedings of ICVS Workshop on Computational Attention & Applications (WCAA) (2007)

    Google Scholar 

  30. Mancas, M., Gosselin, B., Macq, B.: Perceptual Image Representation, EURASIP Journal of Image and Video Processing, Article ID 98181, doi:10.1155/2007/98181 (2007)

    Google Scholar 

  31. Validattention website, http://tcts.fpms.ac.be/~mousetrack/pageAccueil.php?langue=en

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mancas, M. (2009). Relative Influence of Bottom-Up and Top-Down Attention. In: Paletta, L., Tsotsos, J.K. (eds) Attention in Cognitive Systems. WAPCV 2008. Lecture Notes in Computer Science(), vol 5395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00582-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00582-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00581-7

  • Online ISBN: 978-3-642-00582-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics