[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Hand Shape Recognition for Human-Computer Interaction

  • Conference paper
Man-Machine Interactions

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 59))

  • 1068 Accesses

Abstract

The paper presents a novel method which allows to communicate with computers by means of hand postures. It is assumed that an input to the method is a binary image of a hand presenting a gesture. A curvature of a hand boundary is analysed in the proposed method. Boundary points which correspond to the boundary parts with specified curvature are used to create a feature vector describing a hand shape. Feature vectors corresponding to shapes which are to be recognised by a system are recorded in a model set. They serve as patterns in a recognition phase. In this phase an analysed shape is compared with all patterns included in the database. A similarity measure, proposed specifically for the method, is used here. One advantage of the method is that it allows to easily add a shape to the recognised shapes set. Moreover, the method can be applied to any shapes, not only hand shapes. The results of the tests carried out on the posture database, which includes 12 664 images of 8 hand shapes, are also presented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chetverikov, D., Szabo, Z.: A simple and efficient algorithm for detection of high curvature points in planar curves. In: Proceedings of the 23rd Workshop of the Austrian Pattern Recognition Group, pp. 175–184 (1999)

    Google Scholar 

  2. Heon, K.S., Gumi-si, K.R., Sul, K.T., Imsil-gun, K.R.: Hand gesture recognition input system and method for a mobile phone, patent 20080089587 (2008), http://www.freepatentsonline.com/20080089587.html

  3. Hodges, S., Izadi, S., Butler, A., Rrustemi, A., Buxton, B.: ThinSight: Versatile multi–touch sensing for thin form–factor displays. In: Proceedings of the ACM Symposium on User Interface Software and Technology, pp. 259–268 (2007)

    Google Scholar 

  4. Kapuściński, T., Marnik, J., Wysoki, M.: Rozpoznawanie gestów rąk w układzie wizyjnym. Pomiary Automatyka Kontrola 1, 56–59 (2005)

    Google Scholar 

  5. Latecki, L.J., Lakämper, R.: Polygon evolution by vertex deletion. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Proceedings of the International Conference on Scale-Space in Computer Vision. Springer, London (1999)

    Google Scholar 

  6. Marnik, J.: The Polish finger alphabet hand postures recognition using elastic graph matching. In: Kurzyński, M., et al. (eds.) Computer Recognition Systems. Advances in Soft Computing, vol. 2, pp. 454–461. Springer, Heidelberg (2007)

    Google Scholar 

  7. Marnik, J., Kapuściński, T., Wysoki, M.: Rozpoznawanie skóry ludzkiej na obrazach cyfrowych. In: Materiały 5tej Krajowej Konferencji Naukowo-Technicznej Diagnostyka Procesów Przemysłowych, pp. 279–282. Łagów, Lubuski (2001)

    Google Scholar 

  8. Marnik, J., Wysoki, M.: Hand posture recognition using mathematical morphology. Archiwum Informatyki Teoretycznej i Stosowanej 16(4), 279–293 (2004)

    Google Scholar 

  9. Microsoft Corporation: Windows speech recognition, http://www.microsoft.com/enable/products/windowsvista/speech.aspx

  10. Piccardi, M.: Background subtraction techniques: a review. In: Proceedings of IEEE Inernational Conference on Systems, Man and Cybernetics, The Hague, The Netherlands (2004)

    Google Scholar 

  11. Publics & Halriney, http://www.hrp.com

  12. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Thomson Engineering, Toronto (2007)

    Google Scholar 

  13. Triesch, J., von der Malsburg, C.: A system for person-independent hand posture recognition against complex backgrounds. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(12), 1449–1453 (2002)

    Article  Google Scholar 

  14. Wilkowski, A.: An efficient system for continuous hand-posture recognition in video sequences. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J. (eds.) Computational Intelligence: Methods and Applications, pp. 411–422. AOW EXIT, Warsaw (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marnik, J. (2009). Hand Shape Recognition for Human-Computer Interaction. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds) Man-Machine Interactions. Advances in Intelligent and Soft Computing, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00563-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00563-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00562-6

  • Online ISBN: 978-3-642-00563-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics