Abstract
Global Positioning System (GPS) technology has become an essential tool used for localization, navigation, tracking, mapping and timing. The typical accuracy of position measurement for stationary receivers and these in motion vary from 3 to 20 m. This accuracy is affected by the variety of factors such as fluctuation of time in which the signal passes through ionosphere and troposphere, inaccurate time measuring in the receiver, or the multipath propagation caused by reflections from buildings and other objects. The localization accuracy can be improved by differential measuring, usage of some additional sensors, or postprocessing. The article presents discussion of possibilities of increasing position measurement accuracy to be applied in the walking assistant device, designed to enhance quality of life for blind people by helping them in outdoor activities within the urban environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Di Lecce, V., Amato, A., Piuri, V.: Neural technologies for increasing the GPS position accuracy. In: Proceedings of the IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, Istanbul, Turkey (2008)
Dimc, F., Music, B., Osredkar, R.: Attaining required positioning accuracy in archeo-geophysical surveying by GPS. In: Proceedings of the 12th International Power Electronics and Motion Control Conference, Portoroz, Slovenia (2006)
Fang, R.J., Su, K.I., Lu, H.C., Wang, C.C., Lin, C.C.: Application of Global Positioning System (GPS) in Earth Sciences teaching. In: Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, pp. 267–271 (2007)
Hentschel, M., Wulf, O., Wagner, B.: A GPS and laser-based localization for urban and non-urban outdoor environments. In: Proceedings of the International Conference on Intelligent Robots and Systems, Nice, France (2008)
Huang, G.S.: Application of the vehicle navigation via GPS carrier phase. In: Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, pp. 218–223 (2006)
Jackson, J.D., Callahan, D.W., Wang, P.F.: Location tracking of test vehicles using accelerometers. In: Proceedings of the 5th WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal Processing, Dallas, US, pp. 333–336 (2006)
Mezentsev, O., Collin, J., Kuusniemi, H., Lachapelle, G.: Accuracy assessment of a high sensitivity GPS based pedestrian navigation system aided by low-cost sensors. Gyroscopy and Navigation 4(47), 49–64 (2004) (in Russian)
Petovello, M., Mezentsev, O., Lachapelle, G., Cannon, M.E.: High sensitivity GPS velocity updates for personal indoor navigation using inertial navigation systems. In: Proceedings of the Navigation GPS Conference, Portland, US (2003)
Sandhana, L.: GPS to help the blind navigate (2003), http://www.wired.com/medtech/health/news/2003/06/59174
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tokarz, K., Dzik, M. (2009). Improving Quality of Satellite Navigation Devices. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds) Man-Machine Interactions. Advances in Intelligent and Soft Computing, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00563-3_71
Download citation
DOI: https://doi.org/10.1007/978-3-642-00563-3_71
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00562-6
Online ISBN: 978-3-642-00563-3
eBook Packages: EngineeringEngineering (R0)