[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Construction of Partial Association Rules with Weights

  • Conference paper
Man-Machine Interactions

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 59))

  • 1028 Accesses

Abstract

This paper is devoted to the study of approximate algorithms for minimization of the total weight of attributes occurring in partial association rules. We consider mainly greedy algorithms with weights for construction of rules. The paper contains bounds on precision of these algorithms and bounds on the minimal weight of partial association rules based on an information obtained during the greedy algorithm run.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proceedings of the 20th International Conference on Very Large Data Bases. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  2. Bazan, J.G.: Discovery of decision rules by matching new objects against data tables. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 521–528. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Chvátal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233–235 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Feige, U.: A threshold of ln n for approximating set cover (preliminary version). In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia, US (1996)

    Google Scholar 

  5. Goethals, B.: Frequent itemset mining implementations repository, http://fimi.cs.helsinki.fi

  6. Kearns, M.J.: The computational complexity of machine learning. Massachussetts Institute of Technology Press, Cambridge (1990)

    Google Scholar 

  7. Moshkov, M.J., Piliszczuk, M., Zielosko, B.: On partial covers, reducts and decision rules with weights. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 211–246. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Moshkov, M.J., Piliszczuk, M., Zielosko, B.: Partial covers, reducts and decision rules in rough sets: theory and applications. Studies in Computational Intelligence, vol. 145. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  9. Nguyen, H.S.: Approximate boolean reasoning: foundations and applications in data mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 334–506. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Nguyen, H.S., Ślęzak, D.: Approximate reducts and association rules – correspondence and complexity results. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 137–145. Springer, Heidelberg (1999)

    Google Scholar 

  11. Pawlak, Z.: Rough sets – theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  12. Pawlak, Z.: Rough set elements. In: Polkowski, L., Skowron, A. (eds.) Rough sets in knowledge discovery 1. Methodology and applications. Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  13. Pawlak, Z., Skowron, A.: Rudiments of rough stes. Information Sciences 177, 3–27; Rough sets: Some extensions. Information Sciences 177, 28–40; Rough sets and boolean reasoning. Information Sciences 177, 41–73 (2007)

    Google Scholar 

  14. Quafafou, M.: α-RST: a generalization of rough set theory. Information Sciences 124(1-4), 301–316 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of the 29th Annual ACM symposium on the theory of computing. El Paso, US (1997)

    Google Scholar 

  16. Skowron, A.: Rough sets in KDD. In: Shi, Z., Faltings, B., Musen, M. (eds.) Proceedings of the 16th IFIP World Computer Congress. Publishing House of Electronic Industry, Beijing (2000)

    Google Scholar 

  17. Slavík, P.: Approximation algorithms for set cover and related problems. Ph.D. thesis, University of New York, Buffalo, US (1998)

    Google Scholar 

  18. Ślęzak, D.: Normalized decision functions and measures for inconsistent decision tables analysis. Fundamenta Informaticae 44(3), 291–319 (2000)

    MATH  MathSciNet  Google Scholar 

  19. Ślęzak, D.: Approximate entropy reducts. Fundamenta Informaticae 53(3-4), 365–390 (2002)

    MathSciNet  Google Scholar 

  20. Wróblewski, J.: Ensembles of classifiers based on approximate reducts. Fundamenta Informaticae 47(3-4), 351–360 (2001)

    MATH  MathSciNet  Google Scholar 

  21. Ziarko, W.: Analysis of uncertain information in the framework of variable precision rough sets. Foundations of Computing and Decision Sciences 18(3-4), 381–396 (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moshkov, M.J., Piliszczuk, M., Zielosko, B. (2009). On Construction of Partial Association Rules with Weights. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds) Man-Machine Interactions. Advances in Intelligent and Soft Computing, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00563-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00563-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00562-6

  • Online ISBN: 978-3-642-00563-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics