[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fuzzy Clustering and Gene Ontology Based Decision Rules for Identification and Description of Gene Groups

  • Conference paper
Man-Machine Interactions

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 59))

Abstract

The paper presents results of the research verifying whether gene clustering that takes under consideration both gene expression values and similarity of GO terms improves a quality of rule-based description of the gene groups. The obtained results show that application of the Conditional Robust Fuzzy C-Medoids algorithm enables to obtain gene groups similar to the groups determined by domain experts. However, the differences observed in clustering influences a description quality of the groups. The rules determined cover more genes retaining their statistical significance. The rules induction and post-processing method presented in the paper takes under consideration, among others, a hierarchy of GO terms and a compound measure that evaluates the generated rules. The approach presented is unique, it makes possible to limit a number of rules determined considerably and to obtain rules that reflect varied biological knowledge even if they cover the same genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. An, A., Cercone, N.: Rule quality measures for rule induction systems description and evaluation. Computational Intelligence 17, 409–424 (2001)

    Article  Google Scholar 

  2. Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–29 (2000)

    Article  Google Scholar 

  3. Azuaje, F., Wang, H., Bodenreider, O.: Ontology-driven similarity approaches to supporting gene functional assessment. In: Proceedings of the 18th Annual Bio-Ontologies Meeting, Michigan, US (2005)

    Google Scholar 

  4. Carmona-Sayez, P., Chagoyen, M., Rodriguez, A., Trelles, O., Carazo, J.M., Pascual-Montano, A.: Integerated analysis of gene expression by association rules discovery. BMC Bioinformatics 7(1), 54 (2006)

    Article  Google Scholar 

  5. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Science 95, 14, 863–14, 868 (1998)

    Google Scholar 

  6. Grzymala-Busse, J.W., Ziarko, W.: Data mining based on rough sets. In: Wang, J. (ed.) Data Mining Opportunities and Challenges, pp. 142–173. IGI Publishing, Hershey (2003)

    Google Scholar 

  7. Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C., Trent, J.M., Staudt, L.M., Hudson, J., Boguski, M.S., Lashkari, D., Shalon, D., Botstein, D., Brown, P.O.: The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999)

    Article  Google Scholar 

  8. Krishnapuram, R., Joshi, A., Nasraoui, O., Yi, L.: Low-complexity fuzzy relational clustering algorithms for web mining. IEEE Transactions on Fuzzy Systems 9(4), 595–607 (2001)

    Article  Google Scholar 

  9. Kustra, R., Zagdański, A.: Incorporating gene ontology in clustering gene expression data. In: Proceedings of the 19th IEEE Symposium on Computer-Based Medical Systems (2006)

    Google Scholar 

  10. Loia, V., Pedrycz, W., Senatore, S.: P-FCM: a proximity-based fuzzy clustering for user-centered web applications. International Journal of Approximate Reasoning 34, 121–144 (2003)

    Article  MATH  Google Scholar 

  11. Łęski, J., Czogała, E.: A new artificial neural network based fuzzy inference system with moving consequents in if-then rules and its applications. Fuzzy Sets and Systems 108(3), 289–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Midelfart, H.: Supervised learning in gene ontology Part I: A rough set framework. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 69–97. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Pedrycz, W.: Conditional fuzzy c-means. Pattern Recognition Letters 17, 625–631 (1996)

    Article  Google Scholar 

  14. Sikora, M.: Rule quality measures in creation and reduction of data role models. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS, vol. 4259, pp. 716–725. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Stefanowski, J., Vanderpooten, D.: Induction of decision rules in classification and discovery-oriented perspectives. International Journal on Intelligent Systems 16(1), 13–27 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gruca, A., Kozielski, M., Sikora, M. (2009). Fuzzy Clustering and Gene Ontology Based Decision Rules for Identification and Description of Gene Groups. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds) Man-Machine Interactions. Advances in Intelligent and Soft Computing, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00563-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00563-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00562-6

  • Online ISBN: 978-3-642-00563-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics