Abstract
Recently, the Particle Swarm Optimization (PSO) method has been successfully applied to many different electromagnetic optimization problems. Due to the complex equations, usually calling for a numerical solution, the associated cost function is in general very computationally expensive. A fast convergence of the optimization algorithm is hence of paramount importance to attain results in an acceptable time.
In this chapter few variations over the standard PSO algorithm, referred to as Meta-PSO, aimed to enhance the global search capability, and, therefore, to improve the algorithm convergence, are analyzed.
The Meta-PSO class of methods can be furthermore subdivided into the Undifferentiated and a Differentiated subclasses, whether the law updating particle velocity is the same for all particles or not, respectively.
In recently published open literature the results of the application of the Meta-PSO to the optimization of single-objective problems have been shown. Here we will prove their enhanced properties with respect to standard PSO also for the optimization of multi-objective problems, trough their test in multi-objective benchmarks and multi-objective optimization of an antenna array.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fonseca, C.M., Fleming, P.J.: Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms Part I and II. IEEE Trans. Syst., Man, Cybern. 28(1), 26–37 (1997)
Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)
Selleri, S., Mussetta, M., Pirinoli, P., Zich, R.E., Matekovits, L.: Some Insight over New Variations of the Particle Swarm Optimization Method. IEEE Antennas and Wireless Propagation Letters 5, 235–238
Reyes-Sierra, M., Coello Coello, C.A.: Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. Int. Journal of Computational Intelligence Research 2(3), 287–308 (2006)
Mostaghim, S., Teich, J.: Covering Pareto-optimal Fronts by Subswarms in Multi-objective Particle Swarm Optimization. In: Proc. of Congress on Evolutionary Computation, CEC 2004, vol. 2, June 2004, pp. 1404–1411 (2004)
Eberhart, R.C., Shi, Y.: Comparison between genetic algorithms and particle swarm optimization. In: Proc. of 7th Annual Conf. Evol. Program., March 1998, pp. 611–616 (1998)
Hodgson, R.J.W.: Particle swarm optimization applied to the atomic cluster optimization problem. In: Proc. of Genetic and Evolut. Comput. Conf., pp. 68–73 (2002)
Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propagat. 52, 397–407 (2004)
Boeringer, D.W., Werner, D.H.: Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Trans. Antennas Propagat. 52, 771–779 (2004)
Matekovits, L., Mussetta, M., Pirinoli, P., Selleri, S., Zich, R.E.: Particle swarm optimization of microwave microstrip filters. In: 2004 IEEE AP-S Symposium Digests, Monterey (CA), June 20-26 (2004)
Gies, D., Rahmat-Samii, Y.: Reconfigurable array design using parallel particle swarm optimization. In: IEEE AP-S Symposium Digests, June 22-27, 2003, pp. 177–180 (2003)
Ciuprina, G., Ioan, D., Munteanu, I.: Use of intelligent-particle swarm optimization in electromagnetics. IEEE Trans. on Magnetics 38, 1037–1040 (2002)
Matekovits, L., Mussetta, M., Pirinoli, P., Selleri, S., Zich, R.E.: Improved PSO Algorithms for Electromagnetic Optimization. In: 2005 IEEE AP-S Symposium Digests, Washington (DC), July 3-8 (2005)
Jin, N., Rahmat-Samii, Y.: Parallel particle swarm optimization and finite- difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antennas Propagat. 53, 3459–3468 (2005)
Cui, S., Weile, D.S.: Application of a parallel particle swarm optimization scheme to the design of electromagnetic absorbers. IEEE Trans. Antennas Propagat. 53, 3616–3624 (2005)
Jin, N., Rahmat-Samii, Y.: IEEE Advances in Particle Swarm Optimization for Antenna Designs: Real-Number, Binary, Single-Objective and Multiobjective Implementations. IEEE Trans. Antennas Propagat. 55, 556–567 (2007)
Moradi, A., Fotuhi-Firuzabad, M.: Optimal Switch Placement in Distribution Systems Using Trinary Particle Swarm Optimization Algorithm. IEEE Trans. Power Deliv. 23, 271–279 (2008)
Selleri, S., Mussetta, M., Pirinoli, P., Zich, R.E., Matekovits, L.: Differentiated Meta-PSO Methods for Array Optimozation. IEEE Trans. Antennas Propagat. 56 (January 2008)
Parsopoulos, K., Vrahatis, M.: Recent approaches to global optimization problems through particle swarm optimization. Natural Computing 1, 235–306 (2002)
Velduizen, D., Zydallis, J., Lamont, G.: Considerations in engineering parallel multiobjective evolutionary optimizations. IEEE Trans. Evol. Comput. 7(2), 144–173 (2003)
Genovesi, S., Monorchio, A., Mittra, R., Manara, G.: A Sub-boundary Approach for Enhanced Particle Swarm Optimization and its Application to the Design of Artificial Magnetic Conductors. IEEE Trans. Antennas Propagat. 55, 766–770 (2007)
Kennedy, J.: Stereotyping: improving particle swarm performance with cluster analysis. In: Proc. of Congress on Evolutionary Computation, Washington DC, July 6-9, vol. 3, pp. 1931–1938 (1999)
Shi, Y., Krohling, R.A.: Co-evolutionary particle swarm optimization to solve min-max problems. In: Proc. of Congress on Evolutionary Computation, Honolulu, HI, May 12-17, vol. 2, pp. 1682–1687 (2002)
van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Tans. Evol. Comput. 8, 225–239 (2004)
Kennedy, J.: Small worlds and mega-minds: effect of neighborhood topology on particle swarm performance. In: Proc. of Congress on Evolutionary Computation, Washington DC, July 6-9, vol. 3, pp. 1931–1938 (1999)
Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)
Eberhart, R.C., Shi, Y.: Particle swarm optimisation: developments, applications and resources. In: Proc. of Congress on Evolutionary Computation, pp. 81–86 (2001)
Bajpai, P., Singh, S.N.: Fuzzy Adaptive Particle Swarm Optimization for Bidding Strategy in Uniform Price Spot Market. IEEE Trans. Power Syst. 22, 2152–2160 (2007)
Xu, S., Rahmat-Samii, Y.: Boundary Conditions in Particle Swarm Optimization Revisited. IEEE Trans. Antennas Propagat. 55, 760–765 (2007)
Mikki, S.M., Kishk, A.A.: Hybrid Periodic Boundary Condition for Particle Swarm Optimization. IEEE Trans. Antennas Propagat. 55, 3251–3256 (2007)
Mansour, M.M., Mekhamer, S.F., El-Sherif El-Kharbawe, N.: A Modified Particle Swarm Optimizer for the Coordination of Directional Overcurrent Relays. IEEE Trans. Power Deliv. 22, 1400–1410 (2007)
Mussetta, M., Selleri, S., Pirinoli, P., Zich, R., Matekovits, L.: Improved Particle Swarm Optimization algorithms for electromagnetic optimization. Journal of Intelligent and Fuzzy Systems 19, 75–84 (2008)
Olcan, D.I., Kolundzija, B.M.: Adaptive random search for antenna optimization. In: IEEE Proc. Antennas and Propagation Society International Symposium, June 2004, vol. 1, pp. 1114–1117 (2004)
Jin, N., Rahmat-Samii, Y.: Advances in Particle Swarm Optimization for Antenna Designs: Real-Number, Binary, Single-Objective and Multiobjective Implementations. IEEE Trans. Antennas and Propagation 5(3), 556–567 (2007)
Mussetta, M., Pirinoli, P., Selleri, S., Zich, R.E.: Differentiated Meta-PSO Techniques for Antenna Optimization. In: Proc. of ICEAA, Turin, Italy, September 2007, vol. 53, pp. 2674–2679 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Mussetta, M., Pirinoli, P., Selleri, S., Zich, R.E. (2010). Meta-PSO for Multi-Objective EM Problems. In: Nedjah, N., dos Santos Coelho, L., de Macedo Mourelle, L. (eds) Multi-Objective Swarm Intelligent Systems. Studies in Computational Intelligence, vol 261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05165-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-05165-4_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05164-7
Online ISBN: 978-3-642-05165-4
eBook Packages: EngineeringEngineering (R0)