[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Illumination Compensation for Document Images Using Local-Global Block Analysis

  • Conference paper
Visual Informatics: Bridging Research and Practice (IVIC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5857))

Included in the following conference series:

Abstract

This paper presents the illumination compensation technique for document images using local-global block analysis. Imbalance illumination will affect the performance of classification and segmentation process because the darker regions conceal the information of the image. This method will split the image into non-overlapped blocks, and utilize the information within the local and global area of the image. The output images were binarized with simple global thresholding technique and the result shows that the output image is comparable in quality with the existed method. A comparative result will be presented with other document binarization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kasturi, R., O’Gorman, L., Govindaraju, V.: Document Image Analysis: A Primer. Sadhana 27, Part 1, 3–22 (2002)

    Article  Google Scholar 

  2. Saripan, M.I., Azmi, M.H., Raja Abdullah, R.S.A., Anuar, L.H.: Illumination Compensation in Pig Skin Texture Using Local-global Block Analysis. Journal of Modern Applied Science 3(2), 89–93 (2009)

    Google Scholar 

  3. de Mello, C.A.B., Lins, R.D.: A Comparative Study on OCR Tools. In: Vision Interface 1999, Trois-Rivieres, Canada, pp. 224–232 (1999)

    Google Scholar 

  4. Lu, S., Tan, C.L.: Binarization of Badly Illuminated Document Images through Shading Estimation and Compensation. In: ICDAR, pp. 312–316 (2007)

    Google Scholar 

  5. Feng, M.-L., Tan, Y.-P.: Contrast adaptive binarization of low quality document images. IEICE Electronic Express 1(16), 501–506 (2004)

    Article  Google Scholar 

  6. Niblack, W.: An Introdution to Digital Image Processing, pp. 115–116. Prentice Hall, Englewood Cliffs (1986)

    Google Scholar 

  7. Sauvola, J., Pietikainen, M.: Adaptive Document Image Binarization. Pattern Recognition 33, 225–235 (2000)

    Article  Google Scholar 

  8. Wolf, C., Jolion, J.-M.: Extraction and Recognition of Artificial Text in Multimedia Documents. Pattern Analysis Applications 6(4), 309–326 (2004)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Azmi, M.H., Iqbal Saripan, M., Azmir, R.S., Abdullah, R. (2009). Illumination Compensation for Document Images Using Local-Global Block Analysis. In: Badioze Zaman, H., Robinson, P., Petrou, M., Olivier, P., Schröder, H., Shih, T.K. (eds) Visual Informatics: Bridging Research and Practice. IVIC 2009. Lecture Notes in Computer Science, vol 5857. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05036-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05036-7_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05035-0

  • Online ISBN: 978-3-642-05036-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics