[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Unifying Web-Scale Search and Reasoning from the Viewpoint of Granularity

  • Conference paper
Active Media Technology (AMT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5820))

Included in the following conference series:

Abstract

Considering the time constraints and Web scale data, it is impossible to achieve absolutely complete reasoning results. Plus, the same results may not meet the diversity of user needs since their expectations may differ a lot. One of the major solutions for this problem is to unify search and reasoning. From the perspective of granularity, this paper provides various strategies of unifying search and reasoning for effective problem solving on the Web. We bring the strategies of multilevel, multiperspective, starting point from human problem solving to Web scale reasoning to satisfy a wide variety of user needs and to remove the scalability barriers. Concrete methods such as network statistics based data selection and ontology supervised hierarchical reasoning are applied to these strategies. The experimental results based on an RDF dataset shows that the proposed strategies are potentially effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fensel, D., van Harmelen, F.: Unifying reasoning and search to web scale. IEEE Internet Computing 11(2), 96, 94–95 (2007)

    Article  Google Scholar 

  2. Yao, Y.: The art of granular computing. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 101–112. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Yao, Y.: A unified framework of granular computing. In: Handbook of Granular Computing, pp. 401–410. Wiley, Chichester (2008)

    Chapter  Google Scholar 

  4. Zhang, B., Zhang, L.: Theory and Applications of Problem Solving, 1st edn. Elsevier Science Inc., Amsterdam (1992)

    MATH  Google Scholar 

  5. Yao, Y.: Perspectives of granular computing. In: Proceedings of 2005 IEEE International Conference on Granular Computing, vol. 1, pp. 85–90 (2005)

    Google Scholar 

  6. Rogers, T., Patterson, K.: Object categorization: Reversals and explanations of the basic-level advantage. Journal of Experimental Psychology: General 136(3), 451–469 (2007)

    Article  Google Scholar 

  7. Aleman-Meza, B., Hakimpour, F., Arpinar, I., Sheth, A.: Swetodblp ontology of computer science publications. Journal of Web Semantics 5(3), 151–155 (2007)

    Google Scholar 

  8. Barabási, A.: Linked: The New Science of Networks. Perseus Publishing (2002)

    Google Scholar 

  9. Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. Journal of Verbal Learning & Verbal Behavior 8, 240–247 (1969)

    Article  Google Scholar 

  10. Wisniewski, E., Murphy, G.: Superordinate and basic category names in discourse: A textual analysis. Discourse Processing 12, 245–261 (1989)

    Article  Google Scholar 

  11. Minsky, M.: The Emotion Machine: commonsense thinking, artificial intelligence, and the future of the human mind. Simon & Schuster, New York (2006)

    Google Scholar 

  12. Michalski, R., Winston, P.: Variable precision logic. Artificial Intelligence 29(2), 121–146 (1986)

    Article  MATH  Google Scholar 

  13. Carnielli, W., del Cerro, L., Lima-Marques, M.: Contextual negations and reasoning with contradictions. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, pp. 532–537.

    Google Scholar 

  14. Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp. 454–459 (2005)

    Google Scholar 

  15. Hobbs, J.: Granularity. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 432–435 (1985)

    Google Scholar 

  16. Liu, Q., Wang, Q.: Granular logic with closeness relation λ and its reasoning. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 709–717. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Zhou, B., Yao, Y.: A logic approach to granular computing. The International Journal of Cognitive Informatics & Natural Intelligence 2(2), 63–79 (2008)

    Google Scholar 

  18. Murai, T., Resconi, G., Nakata, M., Sato, Y.: Granular reasoning using zooming in & out: Propositional reasoning. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 421–424. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Murai, T., Sato, Y.: Granular reasoning using zooming in & out: Aristotle’s categorical syllogism. Electronic Notes in Theoretical Computer Science 82(4), 186–197 (2003)

    Article  Google Scholar 

  20. Yan, L., Liu, Q.: Researches on granular reasoning based on granular space. In: Proceedings of the 2008 International Conference on Granular Computing, vol. 1, pp. 706–711 (2008)

    Google Scholar 

  21. Wickelgren, W.: Memory storage dynamics. In: Handbook of learning and cognitive processes, pp. 321–361. Lawrence Erlbaum Associates, Hillsdale (1976)

    Google Scholar 

  22. Zeng, Y., Zhong, N.: On granular knowledge structures. In: Proceedings of the first International Conference on Advanced Intelligence, pp. 28–33 (2008)

    Google Scholar 

  23. Vanderveen, K., Ramamoorthy, C.: Anytime reasoning in first-order logic. In: Proceedings of the 9th International Conference on Tools with Artificial Intelligence, pp. 142–148 (1997)

    Google Scholar 

  24. Zhong, N., Liu, J., Yao, Y.: Web Intelligence, 1st edn. Springer, Heidelberg (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeng, Y., Wang, Y., Huang, Z., Zhong, N. (2009). Unifying Web-Scale Search and Reasoning from the Viewpoint of Granularity. In: Liu, J., Wu, J., Yao, Y., Nishida, T. (eds) Active Media Technology. AMT 2009. Lecture Notes in Computer Science, vol 5820. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04875-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04875-3_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04874-6

  • Online ISBN: 978-3-642-04875-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics