[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Getting to Know Your User – Unobtrusive User Model Maintenance within Work-Integrated Learning Environments

  • Conference paper
Learning in the Synergy of Multiple Disciplines (EC-TEL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5794))

Included in the following conference series:

  • 2704 Accesses

Abstract

Work-integrated learning (WIL) poses unique challenges for user model design: on the one hand users’ knowledge levels need to be determined based on their work activities – testing is not a viable option; on the other hand users do interact with a multitude of different work applications – there is no central learning system. This contribution introduces a user model and corresponding services (based on SOA) geared to enable unobtrusive adaptability within WIL environments. Our hybrid user model services interpret usage data in the context of enterprise models (semantic approaches) and utilize heuristics (scruffy approaches) in order to determine knowledge levels, identify subject matter experts, etc. We give an overview of different types of user model services (logging, production, inference, control), provide a reference implementation within the APOSDLE project, and discuss early evaluation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lindstaedt, S.N., Ley, T., Mayer, H.: Integrating Working and Learning in APOSDLE. In: Proceedings of the 11th Business Meeting of the Forum Neue Medien, November 10-11, University of Vienna, Austria (2005)

    Google Scholar 

  2. Eraut, M., Hirsh, W.: The Significance of Workplace Learning for Individuals, Groups and Organisations. SKOPE, Oxford & Cardiff Universities (2007)

    Google Scholar 

  3. Christl, C., Ghidini, C., Guss, J., Lindstaedt, S., Pammer, V., Scheir, P., Serafini, L.: Deploying semantic web technologies for work integrated learning in industry - A comparison: SME vs. Large sized company. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 709–722. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Jameson, A.: Adaptive interfaces and agents. In: Jacko, J.A., Sears, A. (eds.) Human-computer interaction handbook, pp. 305–330. Erlbaum, Mahwah (2003)

    Google Scholar 

  5. Kass, R., Finin, T.: Modeling the User in Natural Language Systems. Computational Linguistics 14(3), 5–22 (1988)

    Google Scholar 

  6. Wang, Y., Kobsa, A.: Respecting User’s Individual Privacy Constraints in Web Personalization. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 157–166. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Benyon, D.R., Murray, D.M.: Adaptive systems; from intelligent tutoring to autonomous agents. Knowledge-Based Systems 6(4), 197–219 (1993)

    Article  Google Scholar 

  8. Jameson, A.: Adaptive interfaces and agents. In: Sears, A., Jacko, J.A. (eds.) Human-computer interaction handbook, pp. 305–330. Erlbaum, Mahwah (2003)

    Google Scholar 

  9. Goecks, J., Shavlik, J.: Learning users’ interests by unobtrusively observing their normal behavior. In: IUI 2000: International Conference on Intelligent User Interfaces, pp. 129–132 (2000)

    Google Scholar 

  10. Schwab, I., Kobsa, A.: Adaptivity through Unobstrusive Learning. KI Special Issue on Adaptivity and User Modeling 3, 5–9 (2002)

    Google Scholar 

  11. Wolpers, M., Martin, G., Najjar, J., Duval, E.: Attention Metadata in Knowledge and Learning Management. In: Proceedings of the I-Know 2006 (2006)

    Google Scholar 

  12. Brusilovsky, P.: KnowledgeTree: A Distributed Architecture for Adaptive E-Learning. In: WWW 2004, New York, USA, May 17-22, pp. 104–113 (2004)

    Google Scholar 

  13. Fox, M., Grueninger, M.: Enterprise modeling. AI Magazine 19(3), 109–121 (1998)

    Google Scholar 

  14. Billett, S.: Constituting the Workplace Curriculum. Journal of Curriculum Studies 38(1), 31–48 (2006)

    Article  Google Scholar 

  15. Lindstaedt, S.N., Ley, T., Scheir, P., Ulbrich, A.: Applying Scruffy Methods to Enable Work-integrated Learning. Upgrade: The European Journal of the Informatics Professional 9(3), 44–50 (2008)

    Google Scholar 

  16. Lindstaedt, S.N., Scheir, P., Lokaiczyk, R., Kump, B., Beham, G., Pammer, V.: Knowledge Services for Work-integrated Learning. In: Proceedings of the European Conference on Technology Enhanced Learning (ECTEL) 2008, Maastricht, The Netherlands, September 16-19, pp. 234–244 (2008)

    Google Scholar 

  17. Ghidini, C., Rospocher, M., Serafini, L., Kump, B., Pammer, V., Faatz, A., Zinnen, A., Guss, J., Lindstaedt, S.: Collaborative Knowledge Engineering via Semantic MediaWiki. In: Proceedings of the I-Semantics 2008, Graz, Austria, September 3-5, pp. 134–141 (2008)

    Google Scholar 

  18. Korossy, K.: Extending the theory of knowledge spaces: A competence-performance approach. Zeitschrift für Psychologie 205, 53–82 (1997)

    Google Scholar 

  19. Doignon, J., Falmagne, J.: Spaces for the assessment of knowledge. International Journal of Man-Machine Studies 23, 175–196 (1985)

    Article  MATH  Google Scholar 

  20. Ley, T., Ulbrich, A., Scheir, P., Lindstaedt, S.N., Kump, B., Albert, D.: Modelling Competencies for supporting Work-integrated Learning in Knowledge Work. Journal of Knowledge Management 12(6), 31–47 (2008)

    Article  Google Scholar 

  21. Lokaiczyk, R., Godehardt, E., Faatz, A., Goertz, M., Kienle, A., Wessner, W.M., Ulbrich, A.: Exploiting Context Information for Identification of Relevant Experts in Collaborative Workplace-Embedded E-Learning Environments. In: Proceedings of the EC-TEL, EC-TEL 2007, Crete, Grece, September 15-20, pp. 217–231 (2007)

    Google Scholar 

  22. Yimam-Seid, D., Kobsa, A.: Expert finding systems for organizations: Problem and domain analysis and the demoir approach. Journal of Organizational Computing and Electronic Commerce 13(1), 1–24 (2003)

    Article  Google Scholar 

  23. Boyle, C.: An adaptive hypertext reading system. User Modeling and User-Adapted Interaction 4(1), 1–19 (1994)

    Article  MathSciNet  Google Scholar 

  24. APOSDLE Consortium: Second Prototype APOSDLE (2008), http://www.aposdle.tugraz.at/media/multimedia/files/second_prototype_aposdle

  25. Dolog, P., Hentze, N., Nejdl, W., Sintek, M.: Personalization in distributed e-learning environments. In: Proceedings of the 13th international World Wide Web conference on Alternate track papers & posters, pp. 170–179 (2004)

    Google Scholar 

  26. Chin, D.N.: Empirical Evaluation of User Models and User-Adapted Systems. User Modeling and User-Adapted Interaction 11, 181–194 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lindstaedt, S.N., Beham, G., Kump, B., Ley, T. (2009). Getting to Know Your User – Unobtrusive User Model Maintenance within Work-Integrated Learning Environments. In: Cress, U., Dimitrova, V., Specht, M. (eds) Learning in the Synergy of Multiple Disciplines. EC-TEL 2009. Lecture Notes in Computer Science, vol 5794. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04636-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04636-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04635-3

  • Online ISBN: 978-3-642-04636-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics