[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Early Clustering Approach towards Modeling of Bottom-Up Visual Attention

  • Conference paper
KI 2009: Advances in Artificial Intelligence (KI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5803))

Included in the following conference series:

  • 1624 Accesses

Abstract

A region-based approach towards modelling of bottom-up visual attention is proposed with an objective to accelerate the internal processes of attention and make its output usable by the high-level vision procedures to facilitate intelligent decision making during pattern analysis and vision-based learning. A memory-based inhibition of return is introduced in order to handle the dynamic scenarios of mobile vision systems. Performance of the proposed model is evaluated on different categories of visual input and compared with human attention response and other existing models of attention. Results show success of the proposed model and its advantages over existing techniques in certain aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it? Nature Reviews, Neuroscience 5, 1–7 (2004)

    Article  Google Scholar 

  2. Neri, P.: Attentional effects on sensory tuning for single-feature detection and double-feature conjunction. In: Vision Research, pp. 3053–3064 (2004)

    Google Scholar 

  3. Koch, C.: Biophysics of Computation. Oxford University Press, New York (1999)

    Google Scholar 

  4. Weaver, B., Lupianez, J., Watson, F.L.: The effects of practice on object-based, location-based, and static-display inhibition of return. Perception & Psychophysics 60, 993–1003 (1998)

    Article  Google Scholar 

  5. Itti, L., Koch, U., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. Transactions on Pattern Analysis and Machine Intelligence 20, 1254–1259 (1998)

    Article  Google Scholar 

  6. Itti, L., Koch, C.: A saliency based search mechanism for overt and covert shifts of visual attention. In: Vision Research, pp. 1489–1506 (2000)

    Google Scholar 

  7. Park, S.J., Shin, J.K., Lee, M.: Biologically inspired saliency map model for bottom-up visual attention. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 418–426. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Heidemann, G., Rae, R., Bekel, H., Bax, I., Ritter, H.: Integrating context-free and context-dependant attentional mechanisms for gestural object reference. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS 2003. LNCS, vol. 2626, pp. 22–33. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Backer, G., Mertsching, B., Bollmann, M.: Data- and model-driven gaze control for an active-vision system. Transactions on Pattern Analysis and Machine Intelligence 23, 1415–1429 (2001)

    Article  Google Scholar 

  10. Meur, O.L., Callet, P.L., Barba, D., Thoreau, D.: A coherent computational approach to model bottom-up visual attention. Transactions on Pattern Analysis and Machine Intelligence 28, 802–817 (2006)

    Article  Google Scholar 

  11. Sun, Y., Fischer, R.: Object-based visual attention for computer vision. Artificial Intelligence 146, 77–123 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Avraham, T., Lindenbaum, M.: Esaliency - a stochastic attention model incorporating similarity information and knowledge-based preferences. In: WRUPKV-ECCV 2006, Graz (2006)

    Google Scholar 

  13. Aziz, M.Z., Mertsching, B.: Color segmentation for a region-based attention model. In: Workshop Farbbildverarbeitung (FWS 2006), Ilmenau, Germany, pp. 74–83 (2006)

    Google Scholar 

  14. Aziz, M.Z., Mertsching, B.: Fast and robust generation of feature maps for region-based visual attention. Transactions on Image Processing 17, 633–644 (2008)

    Article  MathSciNet  Google Scholar 

  15. Kutter, O., Hilker, C., Simon, A., Mertsching, B.: Modeling and simulating mobile robots environments. In: 3rd International Conference on Computer Graphics Theory and Applications (GRAPP 2008), Funchal, Portugal (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aziz, M.Z., Mertsching, B. (2009). Early Clustering Approach towards Modeling of Bottom-Up Visual Attention. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04617-9_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04616-2

  • Online ISBN: 978-3-642-04617-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics