Abstract
In this paper we present a real-time scan-line segment based stereo vision for the estimation of biologically motivated classifier cells in an active vision system. The system is challenged to overcome several problems in autonomous mobile robotic vision such as the detection of incoming moving objects and estimating its 3D motion parameters in a dynamic environment. The proposed algorithm employs a modified optimization module within the scan-line framework to achieve valuable reduction in computation time needed for generating real-time depth map. Moreover, the experimental results showed high robustness against noises and unbalanced light condition in input data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shafik, M., Mertsching, B.: Enhanced motion parameters estimation for an active vision system. Pattern Recognition and Image Analysis 18(3), 370–375 (2008)
Aziz, Z., Mertsching, B.: Fast and robust generation of feature maps for region-based visual attention. IEEE Trans. on Image Processing (5), 633–644 (2008)
Massad, A., Jesikiewicz, M., Mertsching, B.: Space-variant motion analysis for an active-vision system. In: Advanced Concepts for Intelligent Vision Systems, Ghent, Belgium (2002)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. Journal of Computer Vision 47(1/2/3), 7–42 (2002)
Lei, C., Selzer, J., Yang, Y.: Region-tree based stereo using dynamic programming optimization. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition 2, 2378–2385 (2006)
Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: 18th Int. Conf. on Pattern Recognition, ICPR 2006, vol. 3, pp. 15–18 (2006)
Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: Proc. Int. Conf. Computer Vision (ICCV), pp. 508–515 (2001)
Hirschmuller, H.: Stereo vision in structured environments by consistent semi-global matching. In: IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. (2), June 2006, pp. 2386–2393 (2006)
Deng, Y., Lin, X.: A fast line segment based dense stereo algorithm using tree dynamic programming. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 201–212. Springer, Heidelberg (2006)
Tombari, F., Mattoccia, S., Stefano, L.D., Addimanda, E.: Classification and evaluation of cost aggregation methods for stereo correspondence. In: IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), Florida, USA (December 2008)
Foggia, P., Limongiello, A., Vento, M.: A real-time stereo-vision system for moving object and obstacle detection in avg and amr applications. In: Proc. of the Seventh Int. Workshop on Computer Architecture for Machine Perception (CAMP), Washington, DC, USA, pp. 58–63 (2005)
Yang, Q., Engels, C., Akbarzadeh, A.: Near real-time stereo for weakly-textured scenes. In: British Machine Vision Conference (BMVC), Leeds, UK (2008)
Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., Nistér, D.: Real-time global stereo matching using hierarchical belief propagation. In: BMVC, pp. 989–998 (2006)
Wang, L., Liao, M., Gong, M., Yang, R., Nister, D.: High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In: Int. Symposium on 3D Data Processing Visualization and Transmission, pp. 798–805 (2006)
Mattoccia, S., Tombari, F., Stefano, L.D.: Stereo vision enabling precise border localization within a scanline optimization framework. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 517–527. Springer, Heidelberg (2007)
Albright, T.D., Desimone, R., Gross, C.G.: Columnar organisation of directionally selective cells in visual area mt of the macaque. J. Neurophysiol 51, 16–31 (1984)
Duffy, C.J., Wurtz, R.H.: Sensitivity of mst neurons to optic flow stimuli. i. a continuum of response selektivity to large-field stimuli. J. Neurophysiol. 65, 1329–1345 (1991)
Woodbeck, K., Roth, G., Chen, H.: Visual cortex on the GPU: Biologically inspired classifier and feature descriptor for rapid recognition. In: CVPRW, June 2008, pp. 1–8 (2008)
Mertsching, B., Aziz, Z., Stemmer, R.: Design of a simulation framework for evaluation of robot vision and manipulation algorithms. In: Proceedings of Asia Simulation Conference (ICSC), pp. 494–498 (2005)
Kutter, O., Hilker, C., Simon, A., Mertsching, B.: Modeling and simulating mobile robots environments. In: 3rd Int. Conf. on Computer Graphics Theory and Applications, Funchal, Madeira, Portugal (January 2008)
Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, June 2003, vol. 1, pp. 195–202 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shafik, M.S.E.N., Mertsching, B. (2009). Real-Time Scan-Line Segment Based Stereo Vision for the Estimation of Biologically Motivated Classifier Cells. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-04617-9_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04616-2
Online ISBN: 978-3-642-04617-9
eBook Packages: Computer ScienceComputer Science (R0)