[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Real-Time Scan-Line Segment Based Stereo Vision for the Estimation of Biologically Motivated Classifier Cells

  • Conference paper
KI 2009: Advances in Artificial Intelligence (KI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5803))

Included in the following conference series:

Abstract

In this paper we present a real-time scan-line segment based stereo vision for the estimation of biologically motivated classifier cells in an active vision system. The system is challenged to overcome several problems in autonomous mobile robotic vision such as the detection of incoming moving objects and estimating its 3D motion parameters in a dynamic environment. The proposed algorithm employs a modified optimization module within the scan-line framework to achieve valuable reduction in computation time needed for generating real-time depth map. Moreover, the experimental results showed high robustness against noises and unbalanced light condition in input data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shafik, M., Mertsching, B.: Enhanced motion parameters estimation for an active vision system. Pattern Recognition and Image Analysis 18(3), 370–375 (2008)

    Article  Google Scholar 

  2. Aziz, Z., Mertsching, B.: Fast and robust generation of feature maps for region-based visual attention. IEEE Trans. on Image Processing (5), 633–644 (2008)

    Google Scholar 

  3. Massad, A., Jesikiewicz, M., Mertsching, B.: Space-variant motion analysis for an active-vision system. In: Advanced Concepts for Intelligent Vision Systems, Ghent, Belgium (2002)

    Google Scholar 

  4. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. Journal of Computer Vision 47(1/2/3), 7–42 (2002)

    Article  MATH  Google Scholar 

  5. Lei, C., Selzer, J., Yang, Y.: Region-tree based stereo using dynamic programming optimization. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition 2, 2378–2385 (2006)

    Google Scholar 

  6. Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: 18th Int. Conf. on Pattern Recognition, ICPR 2006, vol. 3, pp. 15–18 (2006)

    Google Scholar 

  7. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: Proc. Int. Conf. Computer Vision (ICCV), pp. 508–515 (2001)

    Google Scholar 

  8. Hirschmuller, H.: Stereo vision in structured environments by consistent semi-global matching. In: IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. (2), June 2006, pp. 2386–2393 (2006)

    Google Scholar 

  9. Deng, Y., Lin, X.: A fast line segment based dense stereo algorithm using tree dynamic programming. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 201–212. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Tombari, F., Mattoccia, S., Stefano, L.D., Addimanda, E.: Classification and evaluation of cost aggregation methods for stereo correspondence. In: IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), Florida, USA (December 2008)

    Google Scholar 

  11. Foggia, P., Limongiello, A., Vento, M.: A real-time stereo-vision system for moving object and obstacle detection in avg and amr applications. In: Proc. of the Seventh Int. Workshop on Computer Architecture for Machine Perception (CAMP), Washington, DC, USA, pp. 58–63 (2005)

    Google Scholar 

  12. Yang, Q., Engels, C., Akbarzadeh, A.: Near real-time stereo for weakly-textured scenes. In: British Machine Vision Conference (BMVC), Leeds, UK (2008)

    Google Scholar 

  13. Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., Nistér, D.: Real-time global stereo matching using hierarchical belief propagation. In: BMVC, pp. 989–998 (2006)

    Google Scholar 

  14. Wang, L., Liao, M., Gong, M., Yang, R., Nister, D.: High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In: Int. Symposium on 3D Data Processing Visualization and Transmission, pp. 798–805 (2006)

    Google Scholar 

  15. Mattoccia, S., Tombari, F., Stefano, L.D.: Stereo vision enabling precise border localization within a scanline optimization framework. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 517–527. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Albright, T.D., Desimone, R., Gross, C.G.: Columnar organisation of directionally selective cells in visual area mt of the macaque. J. Neurophysiol 51, 16–31 (1984)

    Google Scholar 

  17. Duffy, C.J., Wurtz, R.H.: Sensitivity of mst neurons to optic flow stimuli. i. a continuum of response selektivity to large-field stimuli. J. Neurophysiol. 65, 1329–1345 (1991)

    Google Scholar 

  18. Woodbeck, K., Roth, G., Chen, H.: Visual cortex on the GPU: Biologically inspired classifier and feature descriptor for rapid recognition. In: CVPRW, June 2008, pp. 1–8 (2008)

    Google Scholar 

  19. Mertsching, B., Aziz, Z., Stemmer, R.: Design of a simulation framework for evaluation of robot vision and manipulation algorithms. In: Proceedings of Asia Simulation Conference (ICSC), pp. 494–498 (2005)

    Google Scholar 

  20. Kutter, O., Hilker, C., Simon, A., Mertsching, B.: Modeling and simulating mobile robots environments. In: 3rd Int. Conf. on Computer Graphics Theory and Applications, Funchal, Madeira, Portugal (January 2008)

    Google Scholar 

  21. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, June 2003, vol. 1, pp. 195–202 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shafik, M.S.E.N., Mertsching, B. (2009). Real-Time Scan-Line Segment Based Stereo Vision for the Estimation of Biologically Motivated Classifier Cells. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04617-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04616-2

  • Online ISBN: 978-3-642-04617-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics