[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Visual Concepts and Fast Visual Diversity to Improve Image Retrieval

  • Conference paper
Evaluating Systems for Multilingual and Multimodal Information Access (CLEF 2008)

Abstract

In this article, we focus our efforts (i) on the study of how to automatically extract and exploit visual concepts and (ii) on fast visual diversity. First, in the Visual Concept Detection Task (VCDT), we look at the mutual exclusion and implication relations between VCDT concepts in order to improve the automatic image annotation by Forest of Fuzzy Decision Trees (FFDTs). Second, in the ImageCLEFphoto task, we use the FFDTs learnt in VCDT task and WordNet to improve image retrieval. Third, we apply a fast visual diversity method based on space clustering to improve the cluster recall score. This study shows that there is a clear improvement, in terms of precision or cluster recall at 20, when using the visual concepts explicitly appearing in the query and that space clustering can be efficiently used to improve cluster recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arni, T., Clough, P., Sanderson, M., Grubinger, M.: Overview of the ImageCLEFphoto 2008 photographic retrieval task. In: Peters, C., et al. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 500–511. Springer, Heidelberg (2009)

    Google Scholar 

  2. Deselaers, T., Deserno, T.M.: The visual concept detection task in ImageCLEF 2008. In: Peters, C., et al. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 531–538. Springer, Heidelberg (2009)

    Google Scholar 

  3. Fellbaum, C. (ed.): WordNet - An Electronic Lexical Database. Bradford Books (1998)

    Google Scholar 

  4. Marsala, C., Bouchon-Meunier, B.: Forest of fuzzy decision trees. In: Proceedings of the Seventh International Fuzzy Systems Association World Congress, vol. 1, pp. 369–374 (1997)

    Google Scholar 

  5. Marsala, C., Detyniecki, M.: Trecvid 2006: Forests of fuzzy decision trees for high-level feature extraction. In: TREC Video Retrieval Evaluation Online Proceedings (2006)

    Google Scholar 

  6. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  7. Tollari, S., Glotin, H.: Web image retrieval on ImagEVAL: Evidences on visualness and textualness concept dependency in fusion model. In: ACM Conference on Image and Video Retrieval (CIVR), pp. 65–72 (2007)

    Google Scholar 

  8. Tollari, S., Mulhem, P., Ferecatu, M., Glotin, H., Detyniecki, M., Gallinari, P., Sahbi, H., Zhao, Z.-Q.: A comparative study of diversity methods for hybrid text and image retrieval approaches. In: Peters, C., et al. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 585–592. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tollari, S., Detyniecki, M., Fakeri-Tabrizi, A., Marsala, C., Amini, MR., Gallinari, P. (2009). Using Visual Concepts and Fast Visual Diversity to Improve Image Retrieval. In: Peters, C., et al. Evaluating Systems for Multilingual and Multimodal Information Access. CLEF 2008. Lecture Notes in Computer Science, vol 5706. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04447-2_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04447-2_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04446-5

  • Online ISBN: 978-3-642-04447-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics