Abstract
In this paper a multi-modal method for human identification that exploits the discriminant features derived from several movement types performed from the same human is proposed. Utilizing a fuzzy vector quantization (FVQ) and linear discriminant analysis (LDA) based algorithm, an unknown movement is first classified, and, then, the person performing the movement is recognized from a movement specific person recognition expert. In case that the unknown person performs more than one movements, a multi-modal algorithm combines the scores of the individual experts to yield the final decision for the identity of the unknown human. Using a publicly available database, we provide promising results regarding the human identification strength of movement specific experts, as well as we indicate that the combination of the outputs of the experts increases the robustness of the human recognition algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kale, A., Sundaresan, A., Rajagopalan, A.N., Cuntoor, N.P., Roy-Chowdhury, A.K., Kruger, V., Chellappa, R.: Identification of Humans Using Gait. IEEE Trans. Image Process. 13(9), 1163–1173 (2004)
Boulgouris, N.V., Hatzinakos, D., Plataniotis, K.N.: Gait recognition: a challenging signal processing technology for biometric identification. IEEE Signal Processing Magazine 22(6), 78–90 (2005)
Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanID gait challenge problem: data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 162–177 (2005)
Xu, D., Yan, S., Tao, D., Lin, S., Zhang, H.J.: Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval. IEEE Trans. Image Process 16(11), 2811–2821 (2007)
Funkunaka, K.: Statistical Pattern Recognition. Academic, San Diego (1990)
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)
Yam, C.Y., Nixon, M.S., Carter, J.N.: Gait Recognition By Walking and Running: A Model-Based Approach. In: Proceedings Asian Conference on Computer Vision, ACCV (2002)
Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: A survey. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1473–1488 (2008)
Gkalelis, N., Tefas, A., Pitas, I.: Combining fuzzy vector quantization with linear discriminant analysis for continuous human movement recognition. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1511–1521 (2008)
Yang, J., Frangi, A.F., Yang, J.Y., Zhang, D., Jin, Z.: KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 230–244 (2005)
Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)
Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as Space-Time Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2247–2253 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gkalelis, N., Tefas, A., Pitas, I. (2009). Fusion of Movement Specific Human Identification Experts. In: Fierrez, J., Ortega-Garcia, J., Esposito, A., Drygajlo, A., Faundez-Zanuy, M. (eds) Biometric ID Management and Multimodal Communication. BioID 2009. Lecture Notes in Computer Science, vol 5707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04391-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-04391-8_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04390-1
Online ISBN: 978-3-642-04391-8
eBook Packages: Computer ScienceComputer Science (R0)