[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fusion of Movement Specific Human Identification Experts

  • Conference paper
Biometric ID Management and Multimodal Communication (BioID 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5707))

Included in the following conference series:

  • 1068 Accesses

Abstract

In this paper a multi-modal method for human identification that exploits the discriminant features derived from several movement types performed from the same human is proposed. Utilizing a fuzzy vector quantization (FVQ) and linear discriminant analysis (LDA) based algorithm, an unknown movement is first classified, and, then, the person performing the movement is recognized from a movement specific person recognition expert. In case that the unknown person performs more than one movements, a multi-modal algorithm combines the scores of the individual experts to yield the final decision for the identity of the unknown human. Using a publicly available database, we provide promising results regarding the human identification strength of movement specific experts, as well as we indicate that the combination of the outputs of the experts increases the robustness of the human recognition algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kale, A., Sundaresan, A., Rajagopalan, A.N., Cuntoor, N.P., Roy-Chowdhury, A.K., Kruger, V., Chellappa, R.: Identification of Humans Using Gait. IEEE Trans. Image Process. 13(9), 1163–1173 (2004)

    Article  Google Scholar 

  2. Boulgouris, N.V., Hatzinakos, D., Plataniotis, K.N.: Gait recognition: a challenging signal processing technology for biometric identification. IEEE Signal Processing Magazine 22(6), 78–90 (2005)

    Article  Google Scholar 

  3. Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanID gait challenge problem: data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 162–177 (2005)

    Article  Google Scholar 

  4. Xu, D., Yan, S., Tao, D., Lin, S., Zhang, H.J.: Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval. IEEE Trans. Image Process 16(11), 2811–2821 (2007)

    Article  MathSciNet  Google Scholar 

  5. Funkunaka, K.: Statistical Pattern Recognition. Academic, San Diego (1990)

    Google Scholar 

  6. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  7. Yam, C.Y., Nixon, M.S., Carter, J.N.: Gait Recognition By Walking and Running: A Model-Based Approach. In: Proceedings Asian Conference on Computer Vision, ACCV (2002)

    Google Scholar 

  8. Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: A survey. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1473–1488 (2008)

    Article  Google Scholar 

  9. Gkalelis, N., Tefas, A., Pitas, I.: Combining fuzzy vector quantization with linear discriminant analysis for continuous human movement recognition. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1511–1521 (2008)

    Article  Google Scholar 

  10. Yang, J., Frangi, A.F., Yang, J.Y., Zhang, D., Jin, Z.: KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 230–244 (2005)

    Article  Google Scholar 

  11. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Article  Google Scholar 

  12. Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as Space-Time Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2247–2253 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gkalelis, N., Tefas, A., Pitas, I. (2009). Fusion of Movement Specific Human Identification Experts. In: Fierrez, J., Ortega-Garcia, J., Esposito, A., Drygajlo, A., Faundez-Zanuy, M. (eds) Biometric ID Management and Multimodal Communication. BioID 2009. Lecture Notes in Computer Science, vol 5707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04391-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04391-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04390-1

  • Online ISBN: 978-3-642-04391-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics