[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Automatic Segmentation and Reconstruction of Mandibular Structures from CT-Data

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2009 (IDEAL 2009)

Abstract

In any medical data analysis a good visualization of specific parts or tissues are fundamental in order to perform accurate diagnosis and treatments. For a better understanding of the data, a segmentation process of the images to isolate the area or region of interest is important to be applied beforehand any visualization step. In this paper we present a method for mandibular structure surface extraction and reconstruction from CT-data images. We tested several methods and algorithms in order to find a fast and feasible approach that could be applicable in clinical procedures, providing practical and efficient tools for mandibular structures analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1976)

    Article  Google Scholar 

  2. Enciso, R., Memon, A., Mah, J.: 3D visualization of the craniofacial patient: Volume segmentation, data integration and animation. In: Proceedings of the Conferences on Orthodontics Advances in Science and Technology (2002)

    Google Scholar 

  3. Lobregts, S.: Dental implant surgery: planning and guidance. Medicamundi 4, 30–35 (2001)

    Google Scholar 

  4. Tognola, G., Parazzini, M., Pedretti, G., Ravazzani, P., Grandori, F., Pesatori, A., Norgia, M., Svelto, C.: Novel 3D reconstruction method for mandibular distraction planning. In: IST 2006 - In Proceedings Of International Workshop on Imaging Systems and Techniques, pp. 82–85 (2006)

    Google Scholar 

  5. Tognola, G., Parazzini, M., Pedretti, G., Ravazzani, P., Svelto, C., Norgia, M., Grandori, F.: Three-dimensional reconstruction and image processing in mandibular distraction planning. IEEE Transactions on Instrumentation and Measurement 55(6), 1959–1964 (2006)

    Article  Google Scholar 

  6. Lamecker, H., Zachow, S., Wittmers, A., Weber, B., Hege, H.-C., Isholtz, B., Stiller, M.: Automatic segmentation of mandibles in low-dose ct-data. International Journal of Computer Assisted Radiology and Surgery 1, 393–394 (2006)

    Google Scholar 

  7. Krsek, P., Spanel, M., Krupa, P., Marek, I., Cernochov, P.: Teeth and jaw 3D reconstruction in stomatology. In: Medical Information Visualisation - BioMedical Visualisation, vol. 1, pp. 23–28. IEEE Computer Society, Los Alamitos (2007)

    Chapter  Google Scholar 

  8. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, New Jersey (2002)

    Google Scholar 

  9. Taubin, G., Zhang, T., Golub, G.H.: Optimal Surface Smoothing as Filter Design. In: Proceedings of the 4th European Conference on Computer Vision, vol. 1, pp. 283–292 (1996)

    Google Scholar 

  10. Hashimoto, K., Kawashima, S., Araki, M., Iwai, K., Sawada, K., Akiyama, Y.: Comparison of image performance between cone-beam computed tomography for dental use and four-row multidetector helical CT. Journal of Oral Science 48, 27–34 (2006)

    Article  Google Scholar 

  11. Insight Toolkit(ITK), http://www.itk.org

  12. Visualization Toolkit(VTK), http://www.vtk.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barandiaran, I. et al. (2009). An Automatic Segmentation and Reconstruction of Mandibular Structures from CT-Data. In: Corchado, E., Yin, H. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2009. IDEAL 2009. Lecture Notes in Computer Science, vol 5788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04394-9_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04394-9_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04393-2

  • Online ISBN: 978-3-642-04394-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics