[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Nearest Neighbor Interaction PSO Based on Small-World Model

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2009 (IDEAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5788))

  • 1950 Accesses

Abstract

Particle swarm optimization with passive congregation (PSOPC) is a novel variant of particle swarm optimization (PSO) by simulating the animal congregation phenomenon. Although it is superior to the standard version in some cases, however, due to the randomly selected neighbor particle, the performance of PSOPC is not always stable. Therefore, in this paper, a new variant – nearest neighbor interaction particle swarm optimization based on small world model (NNISW) is designed to solve this problem. In NNISW, the additional congregation item is associated with the best particle, nor the random ones, and the small world topology structure is introduced also to simulate the true swarm behavior. After compared with other seven famous benchmarks in high-dimensional cases, the performance of this new variant is superior to other three variants of PSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  2. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of 6th International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)

    Google Scholar 

  3. Chen, S., Hong, X., Luk, B.L., Harris, C.J.: Non-linear system identification using particle swarm optimisation tuned radial basis function models. International Journal of Bio-Inspired Computation 1(4), 246–258 (2009)

    Article  Google Scholar 

  4. Senthil Arumugam, M., Ramana Murthy, G., Loo, C.K.: On the optimal control of the steel annealing processes as a two-stage hybrid systems via PSO algorithms. International Journal of Bio-Inspired Computation 1(3), 198–209 (2009)

    Article  Google Scholar 

  5. Parsopoulos, K.E., Kariotou, F., Dassios, G., Vrahatis, M.N.: Tackling magnetoencephalography with particle swarm optimization. International Journal of Bio-Inspired Computation 1(1/2), 32–49 (2009)

    Article  Google Scholar 

  6. Cui, Z.H., Zeng, J.C., Sun, G.J.: A fast particle swarm optimization. International Journal of Innovative Computing, Information and Control 2(6), 1365–1380 (2006)

    Google Scholar 

  7. Monson, C.K., Seppi, K.D.: The Kalman swarm: a new approach to particle motion in swarm optimization. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 140–150. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Iwasaki, N., Yasuda, K.: Adaptive particle swarm optimization using velocity feedback. International Journal of Innovative Computing, Information and Control 1(3), 369–380 (2005)

    Google Scholar 

  9. Liang, J., Qin, A., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation 10(3), 281–295 (2006)

    Article  Google Scholar 

  10. Cui, Z.H., Zeng, J.C.: A guaranteed global convergence particle swarm optimizer. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 762–767. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm opitmizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation 8(3), 240–255 (2004)

    Article  Google Scholar 

  12. He, S., Wu, Q., et al.: A particle swarm optimizer with passive congregation. BioSystems 78(1/3), 135–147 (2004)

    Article  Google Scholar 

  13. Watts, D., Strogatz, S.: Collective dynamics of ”small-world” networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  14. Newman, M., Watts, D.: Renormalization group analysis of the small-world network model. Physics Letter A, 263(4/6), 341–346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cui, Z., Chu, Y., Cai, X. (2009). Nearest Neighbor Interaction PSO Based on Small-World Model. In: Corchado, E., Yin, H. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2009. IDEAL 2009. Lecture Notes in Computer Science, vol 5788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04394-9_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04394-9_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04393-2

  • Online ISBN: 978-3-642-04394-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics