[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Fuzzy Approach for Studying Combinatorial Regulatory Actions of Transcription Factors in Yeast

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2009 (IDEAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5788))

  • 1901 Accesses

Abstract

Eucaryotic gene control regions consists of a promoter plus regulatory DNA sequences which may appear distant from the gene promoter. Regulatory proteins (called transcription factors, TFs), coordinately bind to these regions and produce the correct gene expression patterns. However, most of previous works which study regulatory modules limit their attention to gene promoters. Taking advantage of the ability of fuzzy techniques to handle imprecision, inherent to TFBSs and regulatory-regions location data, a novel fuzzy approach is developed in this work to study significant co-occurrences of closely located TFBSs in the yeast whole-genome. Hence, we firstly obtained fuzzy groups of closely-located TFBSs in the genome by using a clustering algorithm. Then, a fuzzy frequent itemset mining algorithm was applied over the set of fuzzy groups to get significant co-occurrences of TFs. An integrative analysis using STRING revealed a number of significant TF combinations, many of them agreeing with previously published knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alberts, B., et al.: Molecular Biology of The Cell. Garland Science, New York (2002)

    Google Scholar 

  2. Sun, H., et al.: ModuleDigger: an itemset mining framework for the detection of cis-regulatory modules. BMC Bioinformatics 10(Suppl. 1), S30 (2009)

    Article  Google Scholar 

  3. Klepper, K., et al.: Assessment of composite motif discovery methods. BMC Bioinformatics 9, 123 (2008)

    Article  Google Scholar 

  4. Pham, T.H., et al.: Mining Yeast Transcriptional Regulatory Modules from Factor DNA-Binding Sites and Gene Expression Data. Genome Informatics 15(2), 287–295 (2004)

    Google Scholar 

  5. Hertz, G.Z., Stormo, G.D.: Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15(7-8), 563–577 (1999)

    Article  Google Scholar 

  6. Lopez, F.J., et al.: Fuzzy association rules for biological data analysis: a case study on yeast. BMC Bioinformatics 9, 107 (2008)

    Article  Google Scholar 

  7. Zhong, W., Sternberg, P.W.: Automated data integration for developmental biological research. Development 134, 3227–3238 (2007)

    Article  Google Scholar 

  8. Jensen, L.J., et al.: STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acid Res. 37(Database Issue), D412–D416 (2009)

    Article  Google Scholar 

  9. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD Intl. Conf. on Management of Data (ACM SIGMOD 1993), Washington, pp. 207–216 (1993)

    Google Scholar 

  10. Ceglar, A., Roddick, J.F.: Association Mining. ACM Computing Surveys 38(2), Article 5, 1–42 (2006)

    Article  Google Scholar 

  11. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. The Saccharomyces Genome Database, http://www.yeastgenome.org

  13. Harbison, C.T., et al.: Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004)

    Article  Google Scholar 

  14. Kuok, C.M., Fu, A., Wong, M.H.: Mining Fuzzy Association Rules in Databases. SIGMOD Record 27, 41–46 (1998)

    Article  Google Scholar 

  15. Delgado, M., et al.: Fuzzy association rules: General model and applications. IEEE Trans. Fuzzy Systems. 11(2), 214–225 (2003)

    Article  Google Scholar 

  16. Gallo, A., De Bie, T., Cristianini, N.: MINI: Mining Informative Non-redundat Itemsets. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 438–445. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Morgan, C.X., et al.: Predicting combinatorial binding of transcription factors to regulatory elements in the human genome by association rule mining. BMC Bioinformatics 8, 445 (2007)

    Article  Google Scholar 

  18. Koch, C., et al.: A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 261, 1551–1557 (1993)

    Article  Google Scholar 

  19. Schawalder, S.B., et al.: Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature 432(7020), 1058–1061 (2004)

    Article  Google Scholar 

  20. Courel, M., Lallet, S., Camadro, J.M., Blaiseau, P.L.: Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1. Mol. Cell. Biol. 25(15), 6760–6771 (2005)

    Article  Google Scholar 

  21. Pic-Taylor, A., et al.: Regulation of cell cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the forkhead transcription factor Fkh2p. Mol. Cell. Biol. 24(22), 10036–10046 (2004)

    Article  Google Scholar 

  22. Chou, S., Lane, S., Liu, H.: Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Mol. Cell. Biol. 26(13), 4794–4805 (2006)

    Article  Google Scholar 

  23. Bar-Joseph, Z., et al.: Computational discovery of gene modules and regulatory networks. Nature Biotechnology 21(11), 1337–1342 (2003)

    Article  Google Scholar 

  24. Wingender, E., et al.: TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Research 28(1), 316–319 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lopez, F.J., Cano, C., Garcia, F., Blanco, A. (2009). A Fuzzy Approach for Studying Combinatorial Regulatory Actions of Transcription Factors in Yeast. In: Corchado, E., Yin, H. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2009. IDEAL 2009. Lecture Notes in Computer Science, vol 5788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04394-9_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04394-9_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04393-2

  • Online ISBN: 978-3-642-04394-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics