[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Municipal Creditworthiness Modelling by Radial Basis Function Neural Networks and Sensitive Analysis of Their Input Parameters

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5769))

Included in the following conference series:

Abstract

The paper presents concept of vector parameters characterizing creditworthiness of municipalities and its modelling possibilities. Based on designed model and structures of radial basic functions neural networks, the modelling is realized with the aim to classify municipalities into classes. Further, the article includes sensitivity analysis of individual parameter vector components. Sensitivity analysis represents exploring contributions of individual vector components to classification quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Loviscek, L.A., Crowley, F.D.: Municipal Bond Ratings and Municipal Debt Management. Marcel Dekker, New York (2003)

    Google Scholar 

  2. Olej, V., Hajek, P.: Hierarchical Structure of Fuzzy Inference Systems Design for Municipal Creditworthiness Modelling. WSEAS Transactions on Systems and Control 2, 162–169 (2007)

    Google Scholar 

  3. Olej, V., Hajek, P.: Modelling of Municipal Rating by Unsupervised Methods. WSEAS Transactions on Systems 7, 1679–1686 (2006)

    Google Scholar 

  4. Hájek, P., Olej, V.: Municipal creditworthiness modelling by kohonen’s self-organizing feature maps and LVQ neural networks. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 52–61. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Hajek, P., Olej, V.: Municipal creditworthiness modelling by kohonen’s self-organizing feature maps and fuzzy logic neural networks. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 533–542. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Broomhead, D.S., Lowe, D.: Multivariate Functional Interpolation and Adaptive Networks. Complex Systems 2, 321–355 (1988)

    MathSciNet  MATH  Google Scholar 

  7. Moody, J., Darken, C.J.: Fast Learning in Networks of Locally Tuned Processing Units. Neural Computing 1, 281–294 (1989)

    Article  Google Scholar 

  8. Poggio, T., Girosi, F.: Regularization Algorithms for Learning that are Equivalent to Multilayer Networks. Science 247, 978–982 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Niyogi, P., Girosi, F.: On the Relationship between Generalization Error, Hypothesis Complexity, and Sample Complexity for Radial Basis Functions. Massachusetts Institute of Technology Artificial Intelligence Laboratory, Massachusetts (1994)

    Google Scholar 

  10. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall Inc., Englewood Cliffs (1999)

    MATH  Google Scholar 

  11. Poggio, T., Girosi, F.: Networks for Approximation and Learning. Proc. of the IEEE 78, 1481–1497 (1990)

    Article  MATH  Google Scholar 

  12. Park, J., Sandberg, I.W.: Universal Approximation using Radial Basis Function Network. Neural Computing 3, 246–257 (1991)

    Article  Google Scholar 

  13. Wettschereck, D., Dietterich, T.: Improving the Performance of Radial Basis Function Networks by Learning Center Locations. In: Advances in Neural Information Processing Systems, vol. 4, pp. 1133–1140. Morgan Kaufman Publishers, San Francisco (1992)

    Google Scholar 

  14. Orr, M.J.: Regularisation in the Selection of Radial Basis Function Center. Neural Computing 7, 606–623 (1995)

    Article  Google Scholar 

  15. Tou, J.T., Gonzales, R.C.: Pattern Recognition Principles. Addition-Walley Publishing Comp., Massachusetts (1974)

    Google Scholar 

  16. Kohonen, T.: Self-organizing Maps. Springer, New York (2001)

    Book  MATH  Google Scholar 

  17. Carpenter, G.A., Grossberg, S., Reynolds, J.H.: ARTMAP: Supervised Real-time Learning and Classification of Non-stationary Data by a Self-organizing Neural Network. Neural Networks 5, 565–588 (1991)

    Article  Google Scholar 

  18. Speckt, D.F.: Probabilistic Neural Networks. Neural Networks 1, 109–118 (1990)

    Article  Google Scholar 

  19. Cristianini, N., Shawe-Taylor, J.: Introduction to Support Vector Machines and other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  20. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Cambridge (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Olej, V., Hajek, P. (2009). Municipal Creditworthiness Modelling by Radial Basis Function Neural Networks and Sensitive Analysis of Their Input Parameters. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04277-5_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04277-5_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04276-8

  • Online ISBN: 978-3-642-04277-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics