[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5732))

Abstract

Measuring graph similarity is a key issue in many applications. We propose a new constraint-based modeling language for defining graph similarity measures by means of constraints. It covers measures based on univalent matchings, such that each node is matched with at most one node, as well as multivalent matchings, such that a node may be matched with a set of nodes. This language is designed on top of Comet, a programming language supporting both Constraint Programming (CP) and Constraint-Based Local Search (CBLS). Starting from the constraint-based description of the measure, we automatically generate a Comet program for computing the measure. Depending on the measure characteristics, this program either uses CP —which is better suited for computing exact measures such as (sub)graph isomorphism— or CBLS —which is better suited for computing error-tolerant measures such as graph edit distances. First experimental results show the feasibility of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance evaluation of the vf graph matching algorithm. In: ICIAP, pp. 1172–1177 (1999)

    Google Scholar 

  3. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(5), 695–703 (1988)

    Article  MATH  Google Scholar 

  4. Almohamad, H., Duffuaa, S.: A linear programming approach for the weighted graph matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(5), 522–525 (1993)

    Article  Google Scholar 

  5. Zaslavskiy, M., Bach, F., Vert, J.: A path following algorithm for the graph matching problem. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 329–337. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Cross, A., Wilson, R., Hancock, E.: Inexact graph matching using genetic search. Pattern Recognition 30, 953–970 (1997)

    Article  Google Scholar 

  7. Champin, P.A., Solnon, C.: Measuring the similarity of labeled graphs. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 80–95. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172–182. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Sammoud, O., Solnon, C., Ghedira, K.: Ant Algorithm for the Graph Matching Problem. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 213–223. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Monette, J.N., Deville, Y., Van Hentenryck, P.: AEON: Synthesizing scheduling algorithms from high-level models. In: Proceedings of 2009 INFORMS Computing Society Conference (2009)

    Google Scholar 

  11. Vosselman, G.: Relational Matching. LNCS, vol. 628. Springer, Heidelberg (1992)

    Google Scholar 

  12. Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognition Letters 18, 689–694 (1997)

    Article  Google Scholar 

  13. Zaslavskiy, M., Bach, F., Vert, J.P.: A path following algorithm for graph matching. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008 2008. LNCS, vol. 5099, pp. 329–337. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Ambauen, R., Fischer, S., Bunke, H.: Graph Edit Distance with Node Splitting and Merging. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 95–106. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)

    Google Scholar 

  16. Sorlin, S., Solnon, C.: A parametric filtering algorithm for the graph isomorphism problem. Constraints 13(4), 518–537 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zampelli, S., Deville, Y., Solnon, C., Sorlin, S., Dupont, P.: Filtering for Subgraph Isomorphism. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 728–742. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  19. Quimper, C., Golynski, A., Lopez-Ortiz, A., van Beek, P.: An efficient bounds consistency algorithm for the global cardinality constraint. Constraints 10(1), 115–135 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern matching. Mathematical. Structures in Comp. Sci. 12(4), 403–422 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Barabasi, A.L.: Linked: How Everything Is Connected to Everything Else and What It Means. Plume (2003)

    Google Scholar 

  22. De Santo, M., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its use for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett. 24(8), 1067–1079 (2003)

    Article  MATH  Google Scholar 

  23. Bunke, H., Foggia, P., Guidobaldi, C., Sansone, C., Vento, M.: A comparison of algorithms for maximum common subgraph on randomly connected graphs. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 123–132. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  24. Sorlin, S.: Mesurer la similarité de graphes. PhD thesis, Université Claude Bernard, Lyon I, France (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

le Clément, V., Deville, Y., Solnon, C. (2009). Constraint-Based Graph Matching. In: Gent, I.P. (eds) Principles and Practice of Constraint Programming - CP 2009. CP 2009. Lecture Notes in Computer Science, vol 5732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04244-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04244-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04243-0

  • Online ISBN: 978-3-642-04244-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics