[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Involution and Difference Schemes for the Navier–Stokes Equations

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5743))

Included in the following conference series:

Abstract

In the present paper we consider the Navier–Stokes equations for the two-dimensional viscous incompressible fluid flows and apply to these equations our earlier designed general algorithmic approach to generation of finite-difference schemes. In doing so, we complete first the Navier–Stokes equations to involution by computing their Janet basis and discretize this basis by its conversion into the integral conservation law form. Then we again complete the obtained difference system to involution with eliminating the partial derivatives and extracting the minimal Gröbner basis from the Janet basis. The elements in the obtained difference Gröbner basis that do not contain partial derivatives of the dependent variables compose a conservative difference scheme. By exploiting arbitrariness in the numerical integration approximation we derive two finite-difference schemes that are similar to the classical scheme by Harlow and Welch. Each of the two schemes is characterized by a 5×5 stencil on an orthogonal and uniform grid. We also demonstrate how an inconsistent difference scheme with a 3×3 stencil is generated by an inappropriate numerical approximation of the underlying integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pozrikidis, C.: Fluid Dynamics: Theory, Computation and Numerical Simulation. Kluwer, Dordrecht (2001)

    Book  MATH  Google Scholar 

  2. Gerdt, V.P., Blinkov, Y. A., Mozzhilkin, V.V.: Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations. SIGMA 2, 51 (2006) arXiv:math.RA/0605334

    MATH  Google Scholar 

  3. Pommaret, J.F.: Partial Differential Equations and Lie Pseudogroups. Gordon & Breach, London (1978)

    MATH  Google Scholar 

  4. Calmet, J., Hausdorf, M., Seiler, W.M.: A Constructive Introduction to Involution. In: Akerkar, R. (ed.) Proc. Int. Symp. Applications of Computer Algebra - ISACA 2000, pp. 33–50. Allied Publishers, New Delhi (2001), http://www.mathematik.uni-kassel.de/~seiler/

    Google Scholar 

  5. Janet, M.: Leçons sur les Systèmes d’Equations aux Dérivées Partielles. Cahiers Scientifiques, IV, Gauthier-Villars, Paris (1929)

    Google Scholar 

  6. Gerdt, V.P., Blinkov, Y. A.: Involutive Bases of Polynomial Ideals. Math. Comp. Sim. 45, 519–542 (1998) arXiv:math.AC/9912027

    Article  MathSciNet  MATH  Google Scholar 

  7. Gerdt, V.P.: Completion of Linear Differential Systems to Involution. In: Computer Algebra in Scientific Computing CASC 1999, pp. 115–137. Springer, Berlin (1999) arXiv:math.AP/9909114

    Chapter  Google Scholar 

  8. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gresho, P.M., Sani, R.L.: On Pressure Boundary Conditions for the Incompressible Navier-Stokes Equations. Int. J. Numer. Meth. Fluids 7, 1111–1145 (1987)

    MATH  Google Scholar 

  10. Sidorov, A.F., Shapeev, V.P., Yanenko, N.N.: Method of Differential Constraints and its Application to Gas Dynamics, Nauka, Novosibirsk (1984) (in Russian)

    Google Scholar 

  11. Levin, A.: Difference Algebra. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  12. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Dover Publications (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerdt, V.P., Blinkov, Y.A. (2009). Involution and Difference Schemes for the Navier–Stokes Equations. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2009. Lecture Notes in Computer Science, vol 5743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04103-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04103-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04102-0

  • Online ISBN: 978-3-642-04103-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics