Abstract
The quasientropy (QE) is a class of infinitely many functions of probabilities that is similar to the Shannon entropy. In this paper, we review the application of the QE approach to independent component analysis (ICA) and chaotic time series analysis. We also report the new progress of the QE approach to textural features extraction in image processing.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zemansky, M.W.: Heat and Thermodynamics. McGraw-Hill, New York (1968)
Shannon, C.E.: A Mathematical Theory of Communication. The Bell System Technical Journal 27, 379–423, 623–656 (1948)
Renyi, A.: On Measures of Entropy and Information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–561 (1961)
Csiszar, I.: Information-Type Measures of Difference of Probability Distributions and Indirect Observations. Studia Scientiarum Mathematicarum Hungarica 2, 299–318 (1967)
Kapur, J.N.: Measures of Information and Their Applications. John Wiley & Sons, New York (1994)
Chen, Y.: Blind Separation Using Convex Functions. IEEE Trans. Signal Processing 53(6), 2027–2035 (2005)
Chen, Y.: A Novel Grid Occupancy Criterion for Independent Component Analysis. IEICE Trans. Fundamentals E92-A(8) (2009)
Chen, Y., Aihara, K.: New Results on Criteria for Choosing Delay in Strange Attractor Reconstruction. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 946–953. Springer, Heidelberg (2008)
Comon, P.: Independent Component Analysis, A New Concept?. Signal Processing 36, 287–314 (1994)
Jutten, C., Herault, J.: Blind Separation of Sources, Part I: An Adaptive Algorithm Based on Neuromimetic Architecture. Signal Processing 24, 1–10 (1991)
Yang, H.H., Amari, S.: Adaptive Online Learning Algorithms for Blind Separation: Maximum Entropy and Minimum Mutual Information. Neural Computation 9, 1457–1482 (1997)
Bell, A.J., Sejnowski, T.J.: An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation 7, 1129–1159 (1995)
Fraser, A.M., Swinney, H.L.: Independent Coordinates for Strange Attractors from Mutual Information. Physical Review A 33(2), 1134–1140 (1986)
Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural Features for Image Classification. IEEE Trans. Systems, Man, and Cybernetics SMC-3(6), 610–621 (1973)
Ohanian, P.P., Dubes, R.C.: Performance Evaluation for Four Classes of Textural Features. Pattern Recognition 25(8), 819–833 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, Y., Zeng, Z. (2009). Recent Progress of the Quasientropy Approach to Signal and Image Processing. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. ICIC 2009. Lecture Notes in Computer Science, vol 5754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04070-2_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-04070-2_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04069-6
Online ISBN: 978-3-642-04070-2
eBook Packages: Computer ScienceComputer Science (R0)