[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Artificial Chemistry for Networking

  • Conference paper
Bio-Inspired Computing and Communication (BIOWIRE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5151))

Included in the following conference series:

  • 1061 Accesses

Abstract

Chemical computing models have been proposed since the 1980ies for expressing concurrent computations in elegant ways for shared memory systems. In this paper we look at the distributed case of network protocol execution for which we developed an online artificial chemistry. In this chemistry, data packets become molecules which can interact with each other, yielding computation networks comparable to biological metabolisms. Using this execution support, we show how to compute an average over arbitrary networking topologies and relate it to traditional forms of implementing load balancing. Our long-term interest lies in the robust implementation, operation and evolution of network protocols, for which artificial chemistries provide a promising basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banâtre, J.P., Métayer, D.L.: A new computational model and its discipline of programming, Technical Report RR0566, INRIA (1986)

    Google Scholar 

  2. Berry, G., Boudol, G.: The Chemical Abstract Machine. Theoretical Computer Science 96, 217–248 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calude, C.S., Păun, G.: Computing with Cells and Atoms: An Introduction to Quantum, DNA and Membrane Computing. Taylor & Francis, Abington (2001)

    MATH  Google Scholar 

  5. Dittrich, P.: Chemical computing. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 19–32. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Farmer, J.D., Kauffman, S.A., Packard, N.H.: Autocatalytic replication of polymers. Physica D 2(1-3), 50–67 (1986)

    Article  MathSciNet  Google Scholar 

  7. Fontana, W., Buss, L.W.: The Arrival of the Fittest: Toward a Theory of Biological Organization. Bulletin of Mathematical Biology 56, 1–64 (1994)

    MATH  Google Scholar 

  8. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial Chemistries – A Review. Artificial Life 7(3), 225–275 (2001)

    Article  Google Scholar 

  9. Dittrich, P., Banzhaf, W.: Self-Evolution in a Constructive Binary String System. Artificial Life 4(2), 203–220 (1998)

    Article  Google Scholar 

  10. Tschudin, C.: Fraglets – A Metabolistic Execution Model for Communication Protocols. In: Proc. 2nd Annual Symposium on Autonomous Intelligent Networks and Systems (AINS), Menlo Park, USA (2003)

    Google Scholar 

  11. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. Journal of Parallel and Distributed Computing 7, 279–301 (1989)

    Article  Google Scholar 

  12. Hosseini, S.H., Litow, B., Malkawi, M., McPherson, J., Vairavan, K.: Analysis of a graph coloring based distributed load balancing algorithm. Journal of Parallel and Distributed Computing 10, 160–166 (1990)

    Article  Google Scholar 

  13. Xu, C.Z., Lau, F.C.M.: Analysis of the generalized dimension exchange method for dynamic load balancing. Journal of Parallel and Distributed Computing 16, 385–393 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bahi, J., Couturier, R., Vernier, F.: Synchronous distributed load balancing on dynamic networks. Journal of Parallel and Distributed Computing 65, 1397–1405 (2005)

    Article  MATH  Google Scholar 

  15. Canright, G., Deutsch, A., Urnes, T.: Chemotaxis-Inspired Load Balancing. In: Proceedings of the European Conference on Complex Systems (2005)

    Google Scholar 

  16. Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  17. Post, E.: Formal Reductions of the Combinatorial Decision Problem. American Journal of Mathematics 65, 197–215 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sauro, H.M., Ingalls, B.P.: Conservation analysis in biochemical networks: computational issues for software writers. Biophysical Chemistry 109, 1–15 (2004)

    Article  Google Scholar 

  19. Hofmeyr, J.H.S.: Metabolic control analysis in a nutshell. In: Proceedings of the International Conference on Systems Biology, Pasadena, California, pp. 291–300 (2000)

    Google Scholar 

  20. Dittrich, P., di Fenizio, P.S.: Chemical organization theory: towards a theory of constructive dynamical systems. Bulletin of Mathematical Biology 69(4), 1199–1231 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meyer, T., Yamamoto, L., Tschudin, C. (2008). An Artificial Chemistry for Networking. In: Liò, P., Yoneki, E., Crowcroft, J., Verma, D.C. (eds) Bio-Inspired Computing and Communication. BIOWIRE 2007. Lecture Notes in Computer Science, vol 5151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92191-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92191-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92190-5

  • Online ISBN: 978-3-540-92191-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics