[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Quantum Query Complexity of Boolean Functions with Small On-Sets

  • Conference paper
Algorithms and Computation (ISAAC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5369))

Included in the following conference series:

Abstract

The main objective of this paper is to show that the quantum query complexity Q(f) of an N-bit Boolean function f is bounded by a function of a simple and natural parameter, i.e., M = |{x|f(x) = 1}| or the size of f’s on-set. We prove that: (i) For \(poly(N)\le M\le 2^{N^d}\) for some constant 0 < d < 1, the upper bound of Q(f) is \(O(\sqrt{N\log M / \log N})\). This bound is tight, namely there is a Boolean function f such that \(Q(f) = \Omega(\sqrt{N\log M / \log N})\). (ii) For the same range of M, the (also tight) lower bound of Q(f) is \(\Omega(\sqrt{N})\). (iii) The average value of Q(f) is bounded from above and below by \(Q(f) = O(\log M +\sqrt{N})\) and \(Q(f) = \Omega (\log M/\log N+ \sqrt{N})\), respectively. The first bound gives a simple way of bounding the quantum query complexity of testing some graph properties. In particular, it is proved that the quantum query complexity of planarity testing for a graph with n vertices is Θ(N 3/4) where \(N = \frac{n(n-1)}{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aaronson, S.: Lower bounds for local search by quantum arguments. SIAM J. Comput. 35(4), 804–824 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. J. ACM 51(4), 595–605 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambainis, A.: A note on quantum black-box complexity of almost all Boolean functions. Inf. Process. Lett. 71(1), 5–7 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Sys. Sci. 64, 750–767 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambainis, A., Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Any AND-OR formula of size N can be evaluated in time N 1/2 + o(1) on a quantum computer. In: Proc. 48th FOCS, pp. 363–372 (2007)

    Google Scholar 

  7. Ambainis, A., Iwama, K., Kawachi, A., Masuda, H., Putra, R.H., Yamashita, S.: Quantum identification of Boolean oracles. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 105–116. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Ambainis, A., Iwama, K., Kawachi, A., Raymond, R., Yamashita, S.: Improved algorithms for quantum identification of Boolean oracles. Theor. Comput. Sci. 378(1), 41–53 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Anthony, M.: Classification by polynomial surfaces. Discrete Applied Mathematics 61, 91–103 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buhrman, H., Cleve, R., de Wolf, R., Zalka, C.: Bounds for small-error and zero-error quantum algorithms. In: Proc. 40th FOCS, pp. 358–368 (1999)

    Google Scholar 

  12. Buhrman, H., Vereschagin, N., de Wolf, R.: On computation and communication with small bias. In: Proc. 22nd CCC, pp. 24–32 (2007)

    Google Scholar 

  13. van Dam, W.: Quantum oracle interrogation: getting all information for almost half the price. In: Proc. 39th FOCS, pp. 362–367 (1998)

    Google Scholar 

  14. Diestel, R.: Graph Theory, 2nd edn. Graduate Texts in Mathematics. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  15. O’Donnell, R., Servedio, R.A.: Extremal properties of polynomial threshold functions. In: Proc. 18th CCC, pp. 3–12 (2003)

    Google Scholar 

  16. Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of some graph problems. SIAM J. Comput. 35(6), 1310–1328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the Hamiltonian NAND tree. quant-ph/0702144 (2007)

    Google Scholar 

  18. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. 28th STOC, pp. 212–219 (1996)

    Google Scholar 

  19. Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Høyer, P., Špalek, R.: Lower bounds on quantum query complexity. Bulletin of the EATCS 87, 78–103 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: Proc. 39th STOC, pp. 575–584 (2007)

    Google Scholar 

  22. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. In: Proc. ACM-SIAM SODA, pp. 1109–1117 (2005)

    Google Scholar 

  23. Montanaro, A., Nishimura, H., Raymond, R.: Unbounded-error quantum query complexity. In: Proc. 19th ISAAC (to appear, 2008)

    Google Scholar 

  24. Zhang, S.: On the power of Ambainis lower bounds. Theor. Comput. Sci. 339(2-3), 241–256 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ambainis, A. et al. (2008). Quantum Query Complexity of Boolean Functions with Small On-Sets. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92182-0_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92181-3

  • Online ISBN: 978-3-540-92182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics