[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Negation-Limited Inverters of Linear Size

  • Conference paper
Algorithms and Computation (ISAAC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5369))

Included in the following conference series:

Abstract

An inverter is a circuit which outputs ¬x 1, ¬x 2, ..., ¬x n for any Boolean inputs x 1, x 2, ..., x n . Beals, Nishino and Tanaka have given a construction of an inverter which has size O(nlogn) and depth O(logn) and uses ⌈log(n + 1) ⌉ NOT gates. In this paper we give a construction of an inverter which has size O(n) and depth log1 + o(1) n and uses log1 + o(1) n NOT gates. This is the first negation-limited inverter of linear size using only o(n) NOT gates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ajtai, M., Komlós, J., Szemerédi, E.: An O(nlogn) sorting network. In: Proc. of 15th STOC, pp. 1–9 (1983)

    Google Scholar 

  2. Alon, N., Boppana, R.B.: The monotone circuit complexity of Boolean functions. Combinatorica 7(1), 1–22 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amano, K., Maruoka, A.: A superpolynomial lower bound for a circuit computing the clique function with at most (1/6)loglogn negation gates. SIAM J. Comput. 35(1), 201–216 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amano, K., Maruoka, A., Tarui, J.: On the negation-limited circuit complexity of merging. Discrete Applied Mathematics 126(1), 3–8 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andreev, A.E.: On a method for obtaining lower bounds for the complexity of individual monotone functions. Sov. Math. Doklady 31(3), 530–534 (1985)

    MATH  Google Scholar 

  6. Beals, R., Nishino, T., Tanaka, K.: On the complexity of negation-limited Boolean networks. SIAM J. Comput. 27(5), 1334–1347 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fischer, M.J.: The complexity of negation-limited networks - a brief survey. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 71–82. Springer, Heidelberg (1975)

    Google Scholar 

  8. Fischer, M.: Lectures on network complexity, Technical Report 1104, CS Department, Yale University (1974, revised 1996)

    Google Scholar 

  9. Iwama, K., Morizumi, H., Tarui, J.: Negation-limited complexity of parity and inverters. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 223–232. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Jukna, S.: On the minimum number of negations leading to super-polynomial savings. Inf. Process. Lett. 89(2), 71–74 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lamagna, E.A.: The complexity of monotone networks for certain bilinear forms, routing problems, sorting, and merging. IEEE Trans. Computers 28(10), 773–782 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lamagna, E.A., Savage, J.E.: Combinational complexity of some monotone functions. In: Proc. 15th Ann. IEEE Symp. on Switching and Automata Theory, pp. 140–144 (1974)

    Google Scholar 

  13. Markov, A.A.: On the inversion complexity of a system of functions. J. ACM 5(4), 331–334 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  14. Morizumi, H., Tarui, J.: Linear-size log-depth negation-limited inverter for k-tonic binary sequences. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 605–615. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Pippenger, N., Valiant, L.G.: Shifting graphs and their applications. J. ACM 23(3), 423–432 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Razborov, A.A.: Lower bounds on the monotone complexity of some Boolean functions. Sov. Math. Doklady 31, 354–357 (1985)

    MATH  Google Scholar 

  17. Tanaka, K., Nishino, T.: On the complexity of negation-limited Boolean networks. In: Proc. of 26th STOC, pp. 38–47 (1994)

    Google Scholar 

  18. Santha, M., Wilson, C.: Limiting negations in constant depth circuits. SIAM J. Comput. 22(2), 294–302 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sato, T., Amano, K., Maruoka, A.: On the negation-limited circuit complexity of sorting and inverting k-tonic sequences. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 104–115. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Sung, S., Tanaka, K.: Lower bounds on negation-limited inverters. In: Proc. of 2nd DMTCS: Discrete Mathematics and Theoretical Computer Science Conference, pp. 360–368 (1999)

    Google Scholar 

  21. Sung, S., Tanaka, K.: An exponential gap with the removal of one negation gate. Inf. Process. Lett. 82(3), 155–157 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sung, S., Tanaka, K.: Limiting negations in bounded-depth circuits: an extension of Markov’s theorem. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 108–116. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Tanaka, K., Nishino, T., Beals, R.: Negation-limited circuit complexity of symmetric functions. Inf. Process. Lett. 59(5), 273–279 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner Series in Computer Science (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morizumi, H., Suzuki, G. (2008). Negation-Limited Inverters of Linear Size. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92182-0_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92181-3

  • Online ISBN: 978-3-540-92182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics