[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Free-Form Surface Partition in 3-D

  • Conference paper
Algorithms and Computation (ISAAC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5369))

Included in the following conference series:

  • 1617 Accesses

Abstract

We study the problem of partitioning a spherical representation S of a free-form surface F in 3-D, which is to partition a 3-D sphere S into two hemispheres such that a representative normal vector for each hemisphere optimizes a given global objective function. This problem arises in important practical applications, particularly surface machining in manufacturing. We model the spherical surface partition problem as processing multiple off-line sequences of insertions/deletions of convex polygons alternated with certain point queries on the common intersection of the polygons. Our algorithm combines nontrivial data structures, geometric observations, and algorithmic techniques. It takes \(O(\min\{m^2n \log \log m + \frac{m^3 \log^2(mn) \log^2(\log m)}{\log^3 m}, m^3\log^2n+mn\})\) time, where m is the number of polygons, of size O(n) each, in one off-line sequence (generally, m ≤ n). This is a significant improvement over the previous best-known O(m 2 n 2) time algorithm. As a by-product, our algorithm can process O(n) insertions/deletions of convex polygons (of size O(n) each) and queries on their common intersections in O(n 2 loglogn) time, improving over the “standard” O(n 2 logn) time solution for off-line maintenance of O(n 2) insertions/deletions of points and queries. Our techniques may be useful in solving other problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avis, D.: Diameter partitioning. Discrete and Computational Geometry 1(3), 265–276 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. de Berg, M., Cheong, O., van Krefeld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  3. Chazelle, B., Dobkin, D.P., Shouraboura, N., Tal, A.: Strategies for polyhedral surface decomposition: An experimental study. Computational Geometry: Theory and Applications 7, 327–342 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chazelle, B., Palios, L.: Decomposition algorithms in geometry. In: Bajaj, C. (ed.) Algebraic Geometry and its Applications, vol. 27, pp. 419–447. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  5. Chen, L.-L., Chou, S.-Y., Woo, T.C.: Separating and intersecting spherical polygons: Computing machinability on three-, four-, and five-axis numerically controlled machines. ACM Transactions on Graphics 12(4), 305–326 (1993)

    Article  Google Scholar 

  6. Chen, L.L., Woo, T.C.: Computational geometry on the sphere for automated machining. ASME J. Mech. Des. 114(2), 288–295 (1992)

    Article  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  8. Dyer, M.E.: Linear time algorithms for two- and three-variable linear programs. SIAM Journal on Computing 13, 31–45 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edelsbrunner, H.: Dynamic data structures for orthogonal intersection queries, Report F59, Institut für Informationsverarbeitung, Technische Universität Graz, Graz, Austria (1980)

    Google Scholar 

  10. Gupta, P., Janardan, R., Majhi, J., Woo, T.: Efficient geometric algorithms for workpiece orientation in 4- and 5-axis NC-machining. Computer-Aided Design 28(8), 577–587 (1996)

    Article  MATH  Google Scholar 

  11. Hershberger, J., Suri, S.: Finding tailored partitions. In: Proc. 5th Annual ACM Symposium on Computational Geometry, pp. 255–265 (1989)

    Google Scholar 

  12. Hershberger, J., Suri, S.: Off-line maintenance of planar configurations. Journal of Algorithms 21, 453–475 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics (SIGGRAPH 2003) 22(3), 954–961 (2003)

    Article  Google Scholar 

  14. Megiddo, N.: Linear programming in linear time when the dimension is fixed. Journal of ACM 31, 114–127 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Megiddo, N., Supowit, K.: On the complexity of some common geometric location problems. SIAM Journal on Computing 13(1), 182–196 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  17. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 2nd edn. PWS Pub. (1999)

    Google Scholar 

  18. Tang, K., Liu, Y.-J.: An optimization algorithm for free-form surface partitioning based on weighted Gaussian image. Graphical Models 67, 17–42 (2005)

    Article  MATH  Google Scholar 

  19. Tang, K., Woo, T., Gan, J.: Maximum intersection of spherical polygons and workpiece orientation for 4- and 5-axis machining. Journal of Mechanical Design 114, 477–485 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, D.Z., Misiołek, E. (2008). Free-Form Surface Partition in 3-D. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92182-0_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92181-3

  • Online ISBN: 978-3-540-92182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics