Abstract
We study the problem of partitioning a spherical representation S of a free-form surface F in 3-D, which is to partition a 3-D sphere S into two hemispheres such that a representative normal vector for each hemisphere optimizes a given global objective function. This problem arises in important practical applications, particularly surface machining in manufacturing. We model the spherical surface partition problem as processing multiple off-line sequences of insertions/deletions of convex polygons alternated with certain point queries on the common intersection of the polygons. Our algorithm combines nontrivial data structures, geometric observations, and algorithmic techniques. It takes \(O(\min\{m^2n \log \log m + \frac{m^3 \log^2(mn) \log^2(\log m)}{\log^3 m}, m^3\log^2n+mn\})\) time, where m is the number of polygons, of size O(n) each, in one off-line sequence (generally, m ≤ n). This is a significant improvement over the previous best-known O(m 2 n 2) time algorithm. As a by-product, our algorithm can process O(n) insertions/deletions of convex polygons (of size O(n) each) and queries on their common intersections in O(n 2 loglogn) time, improving over the “standard” O(n 2 logn) time solution for off-line maintenance of O(n 2) insertions/deletions of points and queries. Our techniques may be useful in solving other problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avis, D.: Diameter partitioning. Discrete and Computational Geometry 1(3), 265–276 (1986)
de Berg, M., Cheong, O., van Krefeld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)
Chazelle, B., Dobkin, D.P., Shouraboura, N., Tal, A.: Strategies for polyhedral surface decomposition: An experimental study. Computational Geometry: Theory and Applications 7, 327–342 (1997)
Chazelle, B., Palios, L.: Decomposition algorithms in geometry. In: Bajaj, C. (ed.) Algebraic Geometry and its Applications, vol. 27, pp. 419–447. Springer, Heidelberg (1994)
Chen, L.-L., Chou, S.-Y., Woo, T.C.: Separating and intersecting spherical polygons: Computing machinability on three-, four-, and five-axis numerically controlled machines. ACM Transactions on Graphics 12(4), 305–326 (1993)
Chen, L.L., Woo, T.C.: Computational geometry on the sphere for automated machining. ASME J. Mech. Des. 114(2), 288–295 (1992)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
Dyer, M.E.: Linear time algorithms for two- and three-variable linear programs. SIAM Journal on Computing 13, 31–45 (1984)
Edelsbrunner, H.: Dynamic data structures for orthogonal intersection queries, Report F59, Institut für Informationsverarbeitung, Technische Universität Graz, Graz, Austria (1980)
Gupta, P., Janardan, R., Majhi, J., Woo, T.: Efficient geometric algorithms for workpiece orientation in 4- and 5-axis NC-machining. Computer-Aided Design 28(8), 577–587 (1996)
Hershberger, J., Suri, S.: Finding tailored partitions. In: Proc. 5th Annual ACM Symposium on Computational Geometry, pp. 255–265 (1989)
Hershberger, J., Suri, S.: Off-line maintenance of planar configurations. Journal of Algorithms 21, 453–475 (1996)
Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics (SIGGRAPH 2003) 22(3), 954–961 (2003)
Megiddo, N.: Linear programming in linear time when the dimension is fixed. Journal of ACM 31, 114–127 (1984)
Megiddo, N., Supowit, K.: On the complexity of some common geometric location problems. SIAM Journal on Computing 13(1), 182–196 (1984)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)
Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 2nd edn. PWS Pub. (1999)
Tang, K., Liu, Y.-J.: An optimization algorithm for free-form surface partitioning based on weighted Gaussian image. Graphical Models 67, 17–42 (2005)
Tang, K., Woo, T., Gan, J.: Maximum intersection of spherical polygons and workpiece orientation for 4- and 5-axis machining. Journal of Mechanical Design 114, 477–485 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, D.Z., Misiołek, E. (2008). Free-Form Surface Partition in 3-D. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_47
Download citation
DOI: https://doi.org/10.1007/978-3-540-92182-0_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92181-3
Online ISBN: 978-3-540-92182-0
eBook Packages: Computer ScienceComputer Science (R0)