[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Algorithm for Finding Trees with Many Leaves

  • Conference paper
Algorithms and Computation (ISAAC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5369))

Included in the following conference series:

Abstract

We present an algorithm that finds trees with at least k leaves in undirected and directed graphs. These problems are known as Maximum Leaf Spanning Tree for undirected graphs, and, respectively, Directed Maximum Leaf Out-Tree and Directed Maximum Leaf Spanning Out-Tree in the case of directed graphs. The run time of our algorithm is \(O({\it poly}(|V|) + 4^k k^2)\) on undirected graphs, and O(4k |V| ·|E|) on directed graphs. This improves over the previously fastest algorithms for these problems with run times of \(O({\it poly}(|V|) + 6.75^k {\it poly}(k))\) and \(2^{O(k \log k)} {\it poly}(|V|)\), respectively.

Supported by the DFG under grant RO 927/7-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Fomin, F.V., Gutin, G., Krivelevich, M., Saurabh, S.: Better algorithms and bounds for directed maximum leaf problems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 316–327. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Alon, N., Fomin, F.V., Gutin, G., Krivelevich, M., Saurabh, S.: Parameterized algorithms for directed maximum leaf problems. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 352–362. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Bodlaender, H.L.: On linear time minor tests with depth-first search. J. Algorithms 14(1), 1–23 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonsma, P.: Sparse cuts, matching-cuts and leafy trees in graphs. PhD thesis, University of Twente, the Netherlands (2006)

    Google Scholar 

  5. Bonsma, P.S., Brüggemann, T., Woeginger, G.J.: A faster FPT algorithm for finding spanning trees with many leaves. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 259–268. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Bonsma, P.S., Dorn, F.: An FPT algorithm for directed spanning k-leaf (2007), http://arxiv.org/abs/0711.4052

  7. Bonsma, P.S., Dorn, F.: Tight Bounds and Faster Algorithms for Directed Max-Leaf Problems. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 222–233. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Bonsma, P.S., Zickfeld, F.: A 3/2-Approximation Algorithm for Finding Spanning Trees with Many Leaves in Cubic Graphs. In: Proc. of the 34th WG. LNCS. Springer, Heidelberg (to appear, 2008)

    Google Scholar 

  9. Bonsma, P.S., Zickfeld, F.: Spanning trees with many leaves in graphs without diamonds and blossoms. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 531–543. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Dai, F., Wu, J.: An extended localized algorithm for connected dominating set formation in ad hoc wireless networks. IEEE Trans. Parallel Distrib. Syst. 15(10), 908–920 (2004)

    Article  Google Scholar 

  11. Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 219–244. Birkhäuser, Boston (1995)

    Chapter  Google Scholar 

  12. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-time extremal structure I. In: Proc. of the 1st ACiD, pp. 1–41 (2005)

    Google Scholar 

  13. Fellows, M.R., Langston, M.A.: On well-partial-ordering theory and its applications to combinatorial problems in VLSI design. SIAM J. Discrete Math. 5, 117–126 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinatized kernels and catalytic reductions: An improved FPT algorithm for max leaf spanning tree and other problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 240–251. Springer, Heidelberg (2000)

    Google Scholar 

  15. Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the maximum leaves spanning tree problem. Inf. Process. Lett. 52(1), 45–49 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gutin, G., Razgon, I., Kim, E.J.: Minimum Leaf Out-Branching Problems. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 235–246. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM J. Discret. Math. 4(1), 99–106 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc networks. In: Proc. of 3rd MOBIHOC, pp. 112–122. ACM, New York (2002)

    Google Scholar 

  19. Linial, N., Sturtevant, D.: Unpublished result (1987)

    Google Scholar 

  20. Lu, H., Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. J. Algorithms 29(1), 132–141 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Park, M.A., Willson, J., Wang, C., Thai, M., Wu, W., Farago, A.: A dominating and absorbent set in a wireless ad-hoc network with different transmission ranges. In: Proc. of the 8th MOBIHOC, pp. 22–31. ACM, New York (2007)

    Google Scholar 

  22. Robertson, N., Seymour, P.D.: Graph minors—a survey. In: Anderson, I. (ed.) Surveys in Combinatorics, pp. 153–171. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  23. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with maximum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

    Google Scholar 

  24. Thai, M., Wang, F., Liu, D., Zhu, S., Du, D.: Connected dominating sets in wireless networks with different transmission ranges. IEEE Trans. Mob. Comput. 6(7), 721–730 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kneis, J., Langer, A., Rossmanith, P. (2008). A New Algorithm for Finding Trees with Many Leaves. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92182-0_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92181-3

  • Online ISBN: 978-3-540-92182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics