[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Succinct and I/O Efficient Data Structures for Traversal in Trees

  • Conference paper
Algorithms and Computation (ISAAC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5369))

Included in the following conference series:

  • 1616 Accesses

Abstract

We present two results for path traversal in trees, where the traversal is performed in an asymptotically optimal number of I/Os and the tree structure is represented succinctly. Our first result is for bottom-up traversal that starts with a node in the tree T and traverses a path to the root. For blocks of size B, a tree on N nodes, and for a path of length K, we design data structures that permit traversal of the bottom-up path in O(K/B) I/Os using only \(2N + \frac{\epsilon N }{\log_B{N}} + o(N)\) bits, for an arbitrarily selected constant, ε, where 0 < ε< 1. Our second result is for top-down traversal in binary trees. We store T using (3 + q)N + o(N) bits, where q is the number of bits required to store a key, while top-down traversal can still be performed in an asymptotically optimal number of I/Os.

Research supported by NSERC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jacobson, G.: Space-efficient static trees and graphs. FOCS 42, 549–554 (1989)

    Google Scholar 

  2. Chien, Y.F., Hon, W.K., Shah, R., Vitter, J.S.: Geometric Burrows-Wheeler transform: Linking range searching and text indexing. In: DCC, pp. 252–261 (2008)

    Google Scholar 

  3. Aggarwal, A., Jeffrey, S.V.: The input/output complexity of sorting and related problems. Commun. ACM 31(9), 1116–1127 (1988)

    Article  MathSciNet  Google Scholar 

  4. Nodine, M.H., Goodrich, M.T., Vitter, J.S.: Blocking for external graph searching. Algorithmica 16(2), 181–214 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agarwal, P.K., Arge, L., Murali, T.M., Varadarajan, K.R., Vitter, J.S.: I/O-efficient algorithms for contour-line extraction and planar graph blocking (extended abstract). In: SODA, pp. 117–126 (1998)

    Google Scholar 

  6. Hutchinson, D.A., Maheshwari, A., Zeh, N.: An external memory data structure for shortest path queries. Discrete Applied Mathematics 126, 55–82 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage. In: SODA, pp. 383–391 (1996)

    Google Scholar 

  8. Gil, J., Itai, A.: How to pack trees. J. Algorithms 32(2), 108–132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Alstrup, S., Bender, M.A., Demaine, E.D., Farach-Colton, M., Rauhe, T., Thorup, M.: Efficient tree layout in a multilevel memory hierarchy. arXiv:cs.DS/0211010 [cs:DS] (2004)

    Google Scholar 

  10. Demaine, E.D., Iacono, J., Langerman, S.: Worst-case optimal tree layout in a memory hierarchy. arXiv:cs/0410048v1 [cs:DS] (2004)

    Google Scholar 

  11. Brodal, G.S., Fagerberg, R.: Cache-oblivious string dictionaries. In: SODA, pp. 581–590 (2006)

    Google Scholar 

  12. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In: SODA, pp. 233–242 (2002)

    Google Scholar 

  13. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J. Comput. 31(3), 762–776 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Benoit, D., Demaine, E.D., Munro, J., Raman, R., Raman, V., Rao, S.S.: Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dillabaugh, C., He, M., Maheshwari, A. (2008). Succinct and I/O Efficient Data Structures for Traversal in Trees. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92182-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92181-3

  • Online ISBN: 978-3-540-92182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics