Abstract
We present two results for path traversal in trees, where the traversal is performed in an asymptotically optimal number of I/Os and the tree structure is represented succinctly. Our first result is for bottom-up traversal that starts with a node in the tree T and traverses a path to the root. For blocks of size B, a tree on N nodes, and for a path of length K, we design data structures that permit traversal of the bottom-up path in O(K/B) I/Os using only \(2N + \frac{\epsilon N }{\log_B{N}} + o(N)\) bits, for an arbitrarily selected constant, ε, where 0 < ε< 1. Our second result is for top-down traversal in binary trees. We store T using (3 + q)N + o(N) bits, where q is the number of bits required to store a key, while top-down traversal can still be performed in an asymptotically optimal number of I/Os.
Research supported by NSERC.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jacobson, G.: Space-efficient static trees and graphs. FOCS 42, 549–554 (1989)
Chien, Y.F., Hon, W.K., Shah, R., Vitter, J.S.: Geometric Burrows-Wheeler transform: Linking range searching and text indexing. In: DCC, pp. 252–261 (2008)
Aggarwal, A., Jeffrey, S.V.: The input/output complexity of sorting and related problems. Commun. ACM 31(9), 1116–1127 (1988)
Nodine, M.H., Goodrich, M.T., Vitter, J.S.: Blocking for external graph searching. Algorithmica 16(2), 181–214 (1996)
Agarwal, P.K., Arge, L., Murali, T.M., Varadarajan, K.R., Vitter, J.S.: I/O-efficient algorithms for contour-line extraction and planar graph blocking (extended abstract). In: SODA, pp. 117–126 (1998)
Hutchinson, D.A., Maheshwari, A., Zeh, N.: An external memory data structure for shortest path queries. Discrete Applied Mathematics 126, 55–82 (2003)
Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage. In: SODA, pp. 383–391 (1996)
Gil, J., Itai, A.: How to pack trees. J. Algorithms 32(2), 108–132 (1999)
Alstrup, S., Bender, M.A., Demaine, E.D., Farach-Colton, M., Rauhe, T., Thorup, M.: Efficient tree layout in a multilevel memory hierarchy. arXiv:cs.DS/0211010 [cs:DS] (2004)
Demaine, E.D., Iacono, J., Langerman, S.: Worst-case optimal tree layout in a memory hierarchy. arXiv:cs/0410048v1 [cs:DS] (2004)
Brodal, G.S., Fagerberg, R.: Cache-oblivious string dictionaries. In: SODA, pp. 581–590 (2006)
Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In: SODA, pp. 233–242 (2002)
Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J. Comput. 31(3), 762–776 (2001)
Benoit, D., Demaine, E.D., Munro, J., Raman, R., Raman, V., Rao, S.S.: Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dillabaugh, C., He, M., Maheshwari, A. (2008). Succinct and I/O Efficient Data Structures for Traversal in Trees. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-92182-0_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92181-3
Online ISBN: 978-3-540-92182-0
eBook Packages: Computer ScienceComputer Science (R0)