[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Multiscale Modeling Framework Based on P Systems

  • Conference paper
Membrane Computing (WMC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5391))

Included in the following conference series:

Abstract

Cellular systems present a highly complex organization at different scales including the molecular, cellular and colony levels. The complexity at each one of these levels is tightly interrelated. Integrative systems biology aims to obtain a deeper understanding of cellular systems by focusing on the systemic and systematic integration of the different levels of organization in cellular systems.

The different approaches in cellular modeling within systems biology have been classified into mathematical and computational frameworks. Specifically, the methodology to develop computational models has been recently called executable biology since it produces executable algorithms whose computations resemble the evolution of cellular systems.

In this work we present P systems as a multiscale modeling framework within executable biology. P system models explicitly specify the molecular, cellular and colony levels in cellular systems in a relevant and understandable manner. Molecular species and their structure are represented by objects or strings, compartmentalization is described using membrane structures and finally cellular colonies and tissues are modeled as a collection of interacting individual P systems.

The interactions between the components of cellular systems are described using rewriting rules. These rules can in turn be grouped together into modules to characterize specific cellular processes. One of our current research lines focuses on the design of cell systems biology models exhibiting a prefixed behavior through the automatic assembly of these cellular modules. Our approach is equally applicable to synthetic as well as systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, U.: Network motifs: theory and experimental approaches. Nature Reviews Genetics 8, 450–461 (2007)

    Article  Google Scholar 

  2. Bernardini, F., Gheorghe, M., Krasnogor, N.: Quorum sensing P systems. Theoretical Computer Sci. 371, 20–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G., Colombo, S., Martegani, E.: Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast Saccharomyces cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools. Journal of Biotechnology 133, 377–385 (2008)

    Article  Google Scholar 

  4. Bianco, L., Fontana, F., Manca, V.: P systems with reaction maps. Intern. J. Foundations of Computer Sci. 17, 27–48 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ciobanu, G., Pan, L., Păun, G., Pérez-Jiménez, M.J.: P systems with minimal parallelism. Theoretical Computer Sci. 378, 117–130 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25, 1239–1249 (2007)

    Article  Google Scholar 

  7. Fontana, F., Manca, V.: Discrete solutions to differential equations by metabolic P systems. Theoretical Computer Sci. 372, 165–182 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freund, R.: P systems working in the sequential mode on arrays and strings. Int. J. Found. Comput. Sci. 16, 663–682 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)

    Article  Google Scholar 

  10. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Krasnogor, N., Gheorghe, M., Terrazas, G., Diggle, S., Williams, P., Camara, M.: An appealing computational mechanism drawn from bacterial quorum sensing. Bulletin of the EATCS 85, 135–148 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Păun, A., Jesús Pérez-Jímenez, M., Romero-Campero, F.J.: Modeling signal transduction using P systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 100–122. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Păun, G.: Computing with membranes. J. Computer and System Sci. 61, 108–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  15. Păun, G., Romero-Campero, F.J.: Membrane computing as a modeling framework. Cellular systems case studies. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 168–214. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Jesús Pérez-Jímenez, M., Romero-Campero, F.J.: P systems, a new computational modelling tool for systems biology. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 176–197. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P systems. Intern. J. Foundations of Computer Sci. 17, 183–204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ptashne, M., Gann, A.: Genes and Signals. Cold Spring Harbor Laboratory Press (2002)

    Google Scholar 

  19. Regev, A., Shapiro, E.: The π-calculus as an abstraction for biomolecular systems. Modelling in Molecular Biology, 1–50 (2004)

    Google Scholar 

  20. Romero-Campero, F.J., Pérez-Jiménez, M.J.: Modelling gene expression control using P systems: the Lac Operon, a case study. BioSystems 91, 438–457 (2008)

    Article  Google Scholar 

  21. Romero-Campero, F.J., Pérez-Jiménez, M.J.: A model of the quorum sensing system in Vibrio fischeri using P systems. Artificial Life 14, 1–15 (2008)

    Article  Google Scholar 

  22. Romero-Campero, F.J., Cao, H., Cámara, M., Krasnogor, N.: Structure and parameter estimation for cell systems biology models. In: Proc. of the Genetic and Evolutionary Computation Conference, Atlanta, USA, pp. 331–338 (2008)

    Google Scholar 

  23. Romero-Campero, F.J., Twycross, J., Cámara, M., Bennett, M., Gheorghe, M., Krasnogor, N.: Modular assembly of cell systems biology models using P systems (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Romero-Campero, F.J., Twycross, J., Cao, H., Blakes, J., Krasnogor, N. (2009). A Multiscale Modeling Framework Based on P Systems. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2008. Lecture Notes in Computer Science, vol 5391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95885-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95885-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95884-0

  • Online ISBN: 978-3-540-95885-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics