[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards Ludics Programming: Interactive Proof Search

  • Conference paper
Logic Programming (ICLP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5366))

Included in the following conference series:

Abstract

Girard [1] introduced Ludics as an interactive theory aiming at overcoming the distinction between syntax and semantics in logic.

In this paper, we investigate how ludics could serve as a foundation for logic programming, providing a mechanism for interactive proof search, that is proof search by interaction (or proof search by cut-elimination).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Girard, J.Y.: Locus solum. Mathematical Structures in Computer Science 11(3) (2001)

    Google Scholar 

  2. Howard, W.A.: The formulae-as-type notion of construction, 1969. In: Seldin, Hindley (eds.) To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism. Academic Press, New York (1980)

    Google Scholar 

  3. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Annals of Pure and Applied Logic 51 (1991)

    Google Scholar 

  4. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of Logic and Computation 2(3) (1992)

    Google Scholar 

  5. Girard, J.Y.: Linear logic. Theoretical Computer Science 50 (1987)

    Google Scholar 

  6. Naish, L.: Negation and Control in Prolog. LNCS, vol. 238. Springer, Heidelberg (1986)

    MATH  Google Scholar 

  7. Naish, L.: Pruning in logic programming. Technical Report 95/16, Department of Computer Science, University of Melbourne, Australia (1995)

    Google Scholar 

  8. Miller, D.: Sequent calculus and the specification of computation. In: Berger, U., Schwichtenberg, H. (eds.) Computational Logic. Nato ASI Series, vol. 165. Springer, Heidelberg (1999)

    Google Scholar 

  9. Griffin, T.: A formulae-as-types notion of control. In: POPL 1990 (1990)

    Google Scholar 

  10. Parigot, M.: λμ-calculus: an algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  11. Faggian, C., Hyland, M.: Designs, disputes and strategies. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, p. 442. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative linear logic. Journal of Symbolic Logic 59(2) (1994)

    Google Scholar 

  13. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF. Information and Computation 163 (2000)

    Google Scholar 

  14. van Emden, M.H.: Quantitative deduction and its fixpoint theory. Journal of Logic Programming 3(1) (1986)

    Google Scholar 

  15. Cosmo, R.D., Loddo, J.V., Nicolet, S.: A game semantics foundation for logic programming. In: PLILP/ALP (1998)

    Google Scholar 

  16. Loddo, J.V., Cosmo, R.D.: Playing logic programs with the alpha-beta algorithm. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS, vol. 1955. Springer, Heidelberg (2000)

    Google Scholar 

  17. Loddo, J.V.: Généralisation des Jeux Combinatoires et Applications aux Langages Logiques. Ph.D thesis, Université Paris VII (2002)

    Google Scholar 

  18. Pym, D., Ritter, E.: Reductive Logic and Proof-search: proof theory, semantics, and control, vol. 45. Oxford Logic Guides, Oxford (2004)

    Book  MATH  Google Scholar 

  19. Pym, D., Ritter, E.: A games semantics for reductive logic and proof-search. In: Ghica, D., McCusker, G. (eds.) GaLoP 2005 (2005)

    Google Scholar 

  20. Miller, D., Saurin, A.: A game semantics for proof search: Preliminary results. In: Proceedings of MFPS 2005. ENTCS, vol. 155 (2006)

    Google Scholar 

  21. Delande, O., Miller, D.: A neutral approach to proof and refutation in MALL. In: Pfenning, F. (ed.) LICS 2008. IEEE Computer Society Press, Los Alamitos (2008)

    Google Scholar 

  22. Galanaki, C., Rondogiannis, P., Wadge, W.W.: An infinite-game semantics for well-founded negation in logic programming. Annals of Pure and Applied Logic 151(2) (2008)

    Google Scholar 

  23. Laurent, O.: Étude de la polarisation en logique. Thèse de doctorat, Université Aix-Marseille II (2002)

    Google Scholar 

  24. Faggian, C.: Travelling on designs. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471. Springer, Heidelberg (2002)

    Google Scholar 

  25. Fleury, M.R., Quatrini, M.: First order in ludics. Mathematical Structures in Computer Science 14(2) (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saurin, A. (2008). Towards Ludics Programming: Interactive Proof Search. In: Garcia de la Banda, M., Pontelli, E. (eds) Logic Programming. ICLP 2008. Lecture Notes in Computer Science, vol 5366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89982-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89982-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89981-5

  • Online ISBN: 978-3-540-89982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics