Abstract
A popular view is that the brain works in a similar way to a digital computer or a Universal Turing Machine by processing symbols. Psychophysical experiments and our amazing capability to recognize complex objects (like faces) in different light and context conditions argue against symbolic representation and suggest that concept representation related to similarities may be a more appropriate model of brain function. In present work, by looking into anatomical and neurophysiological basis of how we classify objects shapes, we propose to describe computational properties of the brain by rough set theory (Pawlak, 1992 [1]). Concepts representing objects physical properties in variable environment are weak (not precise), but psychophysical space shows precise object categorizations. We estimate brain expertise in classifications of the object’s components by analyzing single cell responses in the area responsible for simple shape recognition ([2]). Our model is based on the receptive field properties of neurons in different visual areas: thalamus, V1 and V4 and on feedforward (FF) and feedback (FB) interactions between them. The FF pathways combine properties extracted in each area into a vast number of hypothetical objects by using “driver logical rules”, in contrast to “modulator logical rules” of the FB pathways. The FB pathways function may help to change weak concepts of objects physical properties into their crisp classification in psychophysical space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pollen, D.A., Przybyszewski, A.W., Rubin, M.A., Foote, W.: Spatial receptive field organization of macaque V4 neurons. Cereb Cortex 12, 601–616 (2002)
Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94(2), 115–147 (1987)
Przybyszewski, A.W., Gaska, J.P., Foote, W., Pollen, D.A.: Striate cortex increases contrast gain of macaque LGN neurons. Vis. Neurosci. 17, 485–494 (2000)
Przybyszewski, A.W., Kagan, I., Snodderly, M.: Eye position influences contrast responses in V1 of alert monkey [Abstract]. Journal of Vision 3(9), 698, 698a (2003), http://journalofvision.org/3/9/698/
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall Series in Artificial Intelligence (2003)
Przybyszewski, A.W., Kon, M.A.: Synchronization-based model of the visual system supports recognition. Program No. 718.11. 2003 Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC (2003)
Kuffler, S.W.: Neurons in the retina; organization, inhibition and excitation problems. Cold Spring Harb. Symp. Quant. Biol. 17, 281–292 (1952)
Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)
Schiller, P.H., Finlay, B.L., Volman, S.F.: Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J. Neurophysiol. 39, 1288–1319 (1976)
Kagan, I., Gur, M., Snodderly, D.M.: Spatial organization of receptive fields of V1 neurons of alert monkeys: comparison with responses to gratings. J. Neurophysiol. 88, 2557–2574 (2002)
Bardy, C., Huang, J.Y., Wang, C., FitzGibbon, T., Dreher, B.: ‘Simplification’ of responses of complex cells in cat striate cortex: suppressive surrounds and ‘feedback’ inactivation. J. Physiol. 574, 731–750 (2006)
Przybyszewski, A.W.: Checking Brain Expertise Using Rough Set Theory. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 746–755. Springer, Heidelberg (2007)
Alonso, J.M., Usrey, W.M., Reid, R.C.: Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J. Neurosci. 21(11), 4002–4015 (2001)
Sherman, S.M., Guillery, R.W.: The role of the thalamus in the flow of information to the cortex. Philos. Trans. R Soc. Lond. B Biol. Sci. 357(1428), 1695–1708 (2002)
Lund, J.S., Lund, R.D., Hendrickson, A.E., Bunt, A.H., Fuchs, A.F.: The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 164, 287–303 (1975)
Fitzpatrick, D., Usrey, W.M., Schofield, B.R., Einstein, G.: The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex. Vis. Neurosci. 11, 307–315 (1994)
Ichida, J.M., Casagrande, V.A.: Organization of the feedback pathway from striate cortex (V1) to the lateral geniculate nucleus (LGN) in the owl monkey (Aotus trivirgatus). J. Comp. Neurol. 454, 272–283 (2002)
Angelucci, A., Sainsbury, K.: Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN. J. Comp. Neurol. 498, 330–351 (2006)
Nakamura, H., Gattass, R., Desimone, R., Ungerleider, L.G.: The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques. J. Neurosci. 13, 3681–3691 (1993)
Rockland, K.S., Virga, A.: Organization of individual cortical axons projecting from area V1 (area 17) to V2 (area 18) in the macaque monkey. Vis. Neurosci. 4, 11–28 (1990)
Rockland, K.S.: Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey. Cereb Cortex 2, 353–374 (1992)
Rockland, K.S., Saleem, K.S., Tanaka, K.: Divergent feedback connections from areas V4 and TEO in the macaque. Vis. Neurosci. 11, 579–600 (1994)
Schummers, J., Mario, J., Sur, M.: Synaptic integration by V1 neurons depends on location within the orientation map. Neuron 36, 969–978 (2002)
Przybyszewski, A.W., Potapov, D.O., Rockland, K.S.: Feedback connections from area V4 to LGN. In: Ann. Meet. Society for Neuroscience, San Diego, USA (2001), http://sfn.scholarone.com/itin2001/prog#620.9
Lades, M., Vortbrueggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C., Wuertz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers 42, 300–311 (1993)
Grdenfors, P.: Conceptual Spaces. MIT Press, Cambridge (2000)
Polkowski, L., Skowron, A.: Rough Mereological Calculi of Granules: A Rough Set Approach to Computation. Computational Intelligence 17, 472–492 (2001)
Przybyszewski, A.W., Linsay, P.S., Gaudiano, P., Wilson, C.: Basic Difference Between Brain and Computer: Integration of Asynchronous Processes Implemented as Hardware Model of the Retina. IEEE Trans. Neural Networks 18, 70–85 (2007)
Treisman, A.: Features and objects: the fourteenth Bartlett memorial lecture. Q J. Exp. Psychol. A 40, 201–237 (1988)
Ramachandran, V.S.: Perception of shape from shading. Nature 331, 163–166 (1988)
Ullman, S., Vidal-Naquet, M., Sali, E.: Visual features of intermediate complexity and their use in classification. Nature Neuroscience 5, 682–687 (2002)
Thorpe, S., Faze, D., Merlot, C.: Speed of processing in the human visual system. Nature 381, 520–522 (1996)
Rousselet, G.A., Fabre-Thorpe, M., Thorpe, S.J.: Parallel processing in high-level categorization of natural images. Nat. Neurosci. 5, 629–630 (2002)
David, S.V., Hayden, B.Y., Gallant, J.L.: Spectral receptive field properties explain shape selectivity in area V4. J. Neurophysiol. 96, 3492–3505 (2006)
Merigan, W.H.: Cortical area V4 is critical for certain texture discriminations, but this effect is not dependent on attention. Vis. Neurosci. 17(6), 949–958 (2000)
Merigan, W.H., Pham, H.A.: V4 lesions in macaques affect both single- and multiple-viewpoint shape discriminations. Vis. Neurosci. 15(2), 359–367 (1998)
Girard, P., Lomber, S.G., Bullier, J.: Shape discrimination deficits during reversible deactivation of area V4 in the macaque monkey. Cereb Cortex 12(11), 1146–1156 (2002)
Dumoulin, S.O., Hess, R.F.: Cortical specialization for concentric shape processing Vision Research, vol. 47, pp. 1608–1613 (2007)
Biederman, I., Subramaniam, S., Bar, M., Kalocsai, P., Fiser, J.: Subordinate-level object classification reexamined. Psychol. Res. 62, 131–153 (1999)
Poggio, T., Edelman, S.: A network that learns to recognize three-dimensional objects. Nature 343, 263–266 (1990)
Girard, P., Hup, J.M., Bullier, J.: Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J. Neurophysiol. 85(3), 1328–1331 (2001)
Wiscott, L., Fellous, J.-M., Krueger, N., von der Malsburg, C.: Face recognition by elastic graph matching. IEEE Pattern Recognition and Machine Intelligence 19, 775–779 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Przybyszewski, A.W. (2008). The Neurophysiological Bases of Cognitive Computation Using Rough Set Theory. In: Peters, J.F., Skowron, A., Rybiński, H. (eds) Transactions on Rough Sets IX. Lecture Notes in Computer Science, vol 5390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89876-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-89876-4_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89875-7
Online ISBN: 978-3-540-89876-4
eBook Packages: Computer ScienceComputer Science (R0)