[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Neurophysiological Bases of Cognitive Computation Using Rough Set Theory

  • Chapter
Transactions on Rough Sets IX

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 5390))

Abstract

A popular view is that the brain works in a similar way to a digital computer or a Universal Turing Machine by processing symbols. Psychophysical experiments and our amazing capability to recognize complex objects (like faces) in different light and context conditions argue against symbolic representation and suggest that concept representation related to similarities may be a more appropriate model of brain function. In present work, by looking into anatomical and neurophysiological basis of how we classify objects shapes, we propose to describe computational properties of the brain by rough set theory (Pawlak, 1992 [1]). Concepts representing objects physical properties in variable environment are weak (not precise), but psychophysical space shows precise object categorizations. We estimate brain expertise in classifications of the object’s components by analyzing single cell responses in the area responsible for simple shape recognition ([2]). Our model is based on the receptive field properties of neurons in different visual areas: thalamus, V1 and V4 and on feedforward (FF) and feedback (FB) interactions between them. The FF pathways combine properties extracted in each area into a vast number of hypothetical objects by using “driver logical rules”, in contrast to “modulator logical rules” of the FB pathways. The FB pathways function may help to change weak concepts of objects physical properties into their crisp classification in psychophysical space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  2. Pollen, D.A., Przybyszewski, A.W., Rubin, M.A., Foote, W.: Spatial receptive field organization of macaque V4 neurons. Cereb Cortex 12, 601–616 (2002)

    Article  Google Scholar 

  3. Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94(2), 115–147 (1987)

    Article  Google Scholar 

  4. Przybyszewski, A.W., Gaska, J.P., Foote, W., Pollen, D.A.: Striate cortex increases contrast gain of macaque LGN neurons. Vis. Neurosci. 17, 485–494 (2000)

    Article  Google Scholar 

  5. Przybyszewski, A.W., Kagan, I., Snodderly, M.: Eye position influences contrast responses in V1 of alert monkey [Abstract]. Journal of Vision 3(9), 698, 698a (2003), http://journalofvision.org/3/9/698/

    Article  Google Scholar 

  6. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall Series in Artificial Intelligence (2003)

    Google Scholar 

  7. Przybyszewski, A.W., Kon, M.A.: Synchronization-based model of the visual system supports recognition. Program No. 718.11. 2003 Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC (2003)

    Google Scholar 

  8. Kuffler, S.W.: Neurons in the retina; organization, inhibition and excitation problems. Cold Spring Harb. Symp. Quant. Biol. 17, 281–292 (1952)

    Article  Google Scholar 

  9. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)

    Article  Google Scholar 

  10. Schiller, P.H., Finlay, B.L., Volman, S.F.: Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J. Neurophysiol. 39, 1288–1319 (1976)

    Google Scholar 

  11. Kagan, I., Gur, M., Snodderly, D.M.: Spatial organization of receptive fields of V1 neurons of alert monkeys: comparison with responses to gratings. J. Neurophysiol. 88, 2557–2574 (2002)

    Article  Google Scholar 

  12. Bardy, C., Huang, J.Y., Wang, C., FitzGibbon, T., Dreher, B.: ‘Simplification’ of responses of complex cells in cat striate cortex: suppressive surrounds and ‘feedback’ inactivation. J. Physiol. 574, 731–750 (2006)

    Article  Google Scholar 

  13. Przybyszewski, A.W.: Checking Brain Expertise Using Rough Set Theory. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 746–755. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Alonso, J.M., Usrey, W.M., Reid, R.C.: Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J. Neurosci. 21(11), 4002–4015 (2001)

    Google Scholar 

  15. Sherman, S.M., Guillery, R.W.: The role of the thalamus in the flow of information to the cortex. Philos. Trans. R Soc. Lond. B Biol. Sci. 357(1428), 1695–1708 (2002)

    Article  Google Scholar 

  16. Lund, J.S., Lund, R.D., Hendrickson, A.E., Bunt, A.H., Fuchs, A.F.: The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 164, 287–303 (1975)

    Article  Google Scholar 

  17. Fitzpatrick, D., Usrey, W.M., Schofield, B.R., Einstein, G.: The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex. Vis. Neurosci. 11, 307–315 (1994)

    Article  Google Scholar 

  18. Ichida, J.M., Casagrande, V.A.: Organization of the feedback pathway from striate cortex (V1) to the lateral geniculate nucleus (LGN) in the owl monkey (Aotus trivirgatus). J. Comp. Neurol. 454, 272–283 (2002)

    Article  Google Scholar 

  19. Angelucci, A., Sainsbury, K.: Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN. J. Comp. Neurol. 498, 330–351 (2006)

    Article  Google Scholar 

  20. Nakamura, H., Gattass, R., Desimone, R., Ungerleider, L.G.: The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques. J. Neurosci. 13, 3681–3691 (1993)

    Google Scholar 

  21. Rockland, K.S., Virga, A.: Organization of individual cortical axons projecting from area V1 (area 17) to V2 (area 18) in the macaque monkey. Vis. Neurosci. 4, 11–28 (1990)

    Article  Google Scholar 

  22. Rockland, K.S.: Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey. Cereb Cortex 2, 353–374 (1992)

    Article  Google Scholar 

  23. Rockland, K.S., Saleem, K.S., Tanaka, K.: Divergent feedback connections from areas V4 and TEO in the macaque. Vis. Neurosci. 11, 579–600 (1994)

    Article  Google Scholar 

  24. Schummers, J., Mario, J., Sur, M.: Synaptic integration by V1 neurons depends on location within the orientation map. Neuron 36, 969–978 (2002)

    Article  Google Scholar 

  25. Przybyszewski, A.W., Potapov, D.O., Rockland, K.S.: Feedback connections from area V4 to LGN. In: Ann. Meet. Society for Neuroscience, San Diego, USA (2001), http://sfn.scholarone.com/itin2001/prog#620.9

  26. Lades, M., Vortbrueggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C., Wuertz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers 42, 300–311 (1993)

    Article  Google Scholar 

  27. Grdenfors, P.: Conceptual Spaces. MIT Press, Cambridge (2000)

    Google Scholar 

  28. Polkowski, L., Skowron, A.: Rough Mereological Calculi of Granules: A Rough Set Approach to Computation. Computational Intelligence 17, 472–492 (2001)

    Article  MathSciNet  Google Scholar 

  29. Przybyszewski, A.W., Linsay, P.S., Gaudiano, P., Wilson, C.: Basic Difference Between Brain and Computer: Integration of Asynchronous Processes Implemented as Hardware Model of the Retina. IEEE Trans. Neural Networks 18, 70–85 (2007)

    Article  Google Scholar 

  30. Treisman, A.: Features and objects: the fourteenth Bartlett memorial lecture. Q J. Exp. Psychol. A 40, 201–237 (1988)

    Article  Google Scholar 

  31. Ramachandran, V.S.: Perception of shape from shading. Nature 331, 163–166 (1988)

    Article  Google Scholar 

  32. Ullman, S., Vidal-Naquet, M., Sali, E.: Visual features of intermediate complexity and their use in classification. Nature Neuroscience 5, 682–687 (2002)

    Google Scholar 

  33. Thorpe, S., Faze, D., Merlot, C.: Speed of processing in the human visual system. Nature 381, 520–522 (1996)

    Article  Google Scholar 

  34. Rousselet, G.A., Fabre-Thorpe, M., Thorpe, S.J.: Parallel processing in high-level categorization of natural images. Nat. Neurosci. 5, 629–630 (2002)

    Google Scholar 

  35. David, S.V., Hayden, B.Y., Gallant, J.L.: Spectral receptive field properties explain shape selectivity in area V4. J. Neurophysiol. 96, 3492–3505 (2006)

    Article  Google Scholar 

  36. Merigan, W.H.: Cortical area V4 is critical for certain texture discriminations, but this effect is not dependent on attention. Vis. Neurosci. 17(6), 949–958 (2000)

    Article  Google Scholar 

  37. Merigan, W.H., Pham, H.A.: V4 lesions in macaques affect both single- and multiple-viewpoint shape discriminations. Vis. Neurosci. 15(2), 359–367 (1998)

    Article  Google Scholar 

  38. Girard, P., Lomber, S.G., Bullier, J.: Shape discrimination deficits during reversible deactivation of area V4 in the macaque monkey. Cereb Cortex 12(11), 1146–1156 (2002)

    Article  Google Scholar 

  39. Dumoulin, S.O., Hess, R.F.: Cortical specialization for concentric shape processing Vision Research, vol. 47, pp. 1608–1613 (2007)

    Google Scholar 

  40. Biederman, I., Subramaniam, S., Bar, M., Kalocsai, P., Fiser, J.: Subordinate-level object classification reexamined. Psychol. Res. 62, 131–153 (1999)

    Article  Google Scholar 

  41. Poggio, T., Edelman, S.: A network that learns to recognize three-dimensional objects. Nature 343, 263–266 (1990)

    Article  Google Scholar 

  42. Girard, P., Hup, J.M., Bullier, J.: Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J. Neurophysiol. 85(3), 1328–1331 (2001)

    Google Scholar 

  43. Wiscott, L., Fellous, J.-M., Krueger, N., von der Malsburg, C.: Face recognition by elastic graph matching. IEEE Pattern Recognition and Machine Intelligence 19, 775–779 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Przybyszewski, A.W. (2008). The Neurophysiological Bases of Cognitive Computation Using Rough Set Theory. In: Peters, J.F., Skowron, A., Rybiński, H. (eds) Transactions on Rough Sets IX. Lecture Notes in Computer Science, vol 5390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89876-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89876-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89875-7

  • Online ISBN: 978-3-540-89876-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics