[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-image Fusion in Remote Sensing: Spatial Enhancement vs. Spectral Characteristics Preservation

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5359))

Included in the following conference series:

  • 1748 Accesses

Abstract

In remote sensing, image fusion techniques are used to fuse high spatial resolution panchromatic and lower spatial resolution multispectral images that are simultaneously recorded by one sensor. This is done to create high resolution multispectral image datasets (pansharpening). In most cases, these techniques provide very good results, i.e. they retain the high spatial resolution of the panchromatic image and the spectral information from the multispectral image. When applied to multitemporal and/or multisensoral image data, these techniques still create spatially enhanced datasets but usually at the expense of the spectral characteristics. In this study, eight multitemporal remote sensing images are fused with one panchromatic image to test eight different fusion techniques. The fused images are visually and quantitatively analyzed for spectral characteristics preservation and spatial enhancement. Of the employed methods, only the newly developed Ehlers fusion guarantees excellent color preservation and spatial improvement for all dates and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wald, L., Ranchin, T., Magolini, M.: Fusion of satellite images of different spatial resolutions – Assessing the quality of resulting images. Phot. Eng. & Rem. Sens. 63, 691–699 (1997)

    Google Scholar 

  2. Pohl, C., van Genderen, J.L.: Multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Rem. Sens. 59, 823–854 (1998)

    Article  Google Scholar 

  3. Zhang, Y.: Understanding image fusion. Phot. Eng. & Rem. Sens. 70, 657–661 (2004)

    Google Scholar 

  4. Ehlers, M.: Spectral characteristics preserving image fusion based on Fourier domain filtering. In: Proc. SPIE, vol. 5574, pp. 1–13 (2004)

    Google Scholar 

  5. Chipman, L.J., Orr, T.M., Lewis, L.N.: Wavelets and image fusion. IEEE Trans. Im. Proc. 3, 248–251 (1995)

    Google Scholar 

  6. Zhang, Y.: A new merging method and its spectral and spatial effects. Int. J. Rem. Sens. 20, 2003–2014 (1999)

    Article  Google Scholar 

  7. Klonus, S., Ehlers, M.: Image fusion using the Ehlers spectral characteristics preserving algorithm. GIScience & Rem. Sens. 44, 93–116 (2007)

    Article  Google Scholar 

  8. Siddiqui, Y.: The modified IHS method for fusing satellite imagery. In: Proc. ASPRS Annual Conf., Anchorage, AK (2003) (CD)

    Google Scholar 

  9. Vrabel, J., Doraiswamy, P., McMurtrey, J., Stern, A.: Demonstration of the accuracy of improved resolution hyperspectral imagery. In: Hutchison, D., Katz, R.H. (eds.) IWSOS 2007. LNCS, vol. 4725, pp. 556–567. Springer, Heidelberg (2007)

    Google Scholar 

  10. Laben, C.A., Bernard, V., Brower, W.: Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening, US Patent 6,011,875 (2000)

    Google Scholar 

  11. Hallada, W.A., Cox, S.: Image sharpening for mixed spatial and spectral resolution satellite systems. In: Proc. 17th Int. Symp. Rem., pp. 1023–1032 (1983)

    Google Scholar 

  12. Chavez, W.J., Sides, S.C., Anderson, J.A.: Comparison of three different methods to merge multiresolution and multispectral data. Phot. Eng. & Rem. Sens. 57, 295–303 (1991)

    Google Scholar 

  13. Crippen, R.E.: A simple spatial filtering routine for the cosmetic removal of scan-line noise from Landsat TM P-Tape imagery. Phot. Eng. & Rem. Sens. 55, 327–331 (1989)

    Google Scholar 

  14. Otazu, X., González-Audícana, M., Fors, O., Núnez, J.: Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods. IEEE Trans. Geosc. Rem. Sens. 43, 2376–2385 (2005)

    Article  Google Scholar 

  15. Wald, L.: Data fusion - Definitions and Architectures - Fusion of Images of Different Spatial Resolutions. École de Mines de Paris (2002)

    Google Scholar 

  16. Zhang, Y.: Automatic image fusion – A new sharpening technique for Ikonos multispectral images. GIM International, 54–57 (2002)

    Google Scholar 

  17. Alparone, L., Aiazzi, B., Baronti, S., Garzelli, A., Nencini, F.: A critical review of fusion methods for true colour display of very high resolution images of urban areas. In: Proc. EARSeL Workshop Urb. Rem. Sens., Berlin, Germany, CD (2006)

    Google Scholar 

  18. Gungor, O., Shan, J.: An optimal fusion approach for optical and SAR images. In: Proc. ISPRS Comm. VII Symp., Enschede, Netherlands, CD (2006)

    Google Scholar 

  19. Yunhao, C., Lei, D., Jing, L., Xiaobing, L., Peijun, S.: A new wavelet-based image fusion method for remotely sensed data. Int. J. Rem. Sens. 27, 1465–1476 (2006)

    Article  Google Scholar 

  20. Ehlers, M., Klonus, S., Åstrand, P.J.: Quality assessment for multi-sensor multi-date image fusion. In: Proc. XXIth Int. Congr. ISPRS, Beijing, China, pp. 499–506 (2008)

    Google Scholar 

  21. Ling, Y., Ehlers, M., Usery, L., Madden, M.: FFT-enhanced IHS transform method for fusing high-resolution satellite images. ISPRS J. Phot. & Rem. Sens. 61, 381–392 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ehlers, M. (2008). Multi-image Fusion in Remote Sensing: Spatial Enhancement vs. Spectral Characteristics Preservation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89646-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89646-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89645-6

  • Online ISBN: 978-3-540-89646-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics