Abstract
In remote sensing, image fusion techniques are used to fuse high spatial resolution panchromatic and lower spatial resolution multispectral images that are simultaneously recorded by one sensor. This is done to create high resolution multispectral image datasets (pansharpening). In most cases, these techniques provide very good results, i.e. they retain the high spatial resolution of the panchromatic image and the spectral information from the multispectral image. When applied to multitemporal and/or multisensoral image data, these techniques still create spatially enhanced datasets but usually at the expense of the spectral characteristics. In this study, eight multitemporal remote sensing images are fused with one panchromatic image to test eight different fusion techniques. The fused images are visually and quantitatively analyzed for spectral characteristics preservation and spatial enhancement. Of the employed methods, only the newly developed Ehlers fusion guarantees excellent color preservation and spatial improvement for all dates and sensors.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wald, L., Ranchin, T., Magolini, M.: Fusion of satellite images of different spatial resolutions – Assessing the quality of resulting images. Phot. Eng. & Rem. Sens. 63, 691–699 (1997)
Pohl, C., van Genderen, J.L.: Multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Rem. Sens. 59, 823–854 (1998)
Zhang, Y.: Understanding image fusion. Phot. Eng. & Rem. Sens. 70, 657–661 (2004)
Ehlers, M.: Spectral characteristics preserving image fusion based on Fourier domain filtering. In: Proc. SPIE, vol. 5574, pp. 1–13 (2004)
Chipman, L.J., Orr, T.M., Lewis, L.N.: Wavelets and image fusion. IEEE Trans. Im. Proc. 3, 248–251 (1995)
Zhang, Y.: A new merging method and its spectral and spatial effects. Int. J. Rem. Sens. 20, 2003–2014 (1999)
Klonus, S., Ehlers, M.: Image fusion using the Ehlers spectral characteristics preserving algorithm. GIScience & Rem. Sens. 44, 93–116 (2007)
Siddiqui, Y.: The modified IHS method for fusing satellite imagery. In: Proc. ASPRS Annual Conf., Anchorage, AK (2003) (CD)
Vrabel, J., Doraiswamy, P., McMurtrey, J., Stern, A.: Demonstration of the accuracy of improved resolution hyperspectral imagery. In: Hutchison, D., Katz, R.H. (eds.) IWSOS 2007. LNCS, vol. 4725, pp. 556–567. Springer, Heidelberg (2007)
Laben, C.A., Bernard, V., Brower, W.: Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening, US Patent 6,011,875 (2000)
Hallada, W.A., Cox, S.: Image sharpening for mixed spatial and spectral resolution satellite systems. In: Proc. 17th Int. Symp. Rem., pp. 1023–1032 (1983)
Chavez, W.J., Sides, S.C., Anderson, J.A.: Comparison of three different methods to merge multiresolution and multispectral data. Phot. Eng. & Rem. Sens. 57, 295–303 (1991)
Crippen, R.E.: A simple spatial filtering routine for the cosmetic removal of scan-line noise from Landsat TM P-Tape imagery. Phot. Eng. & Rem. Sens. 55, 327–331 (1989)
Otazu, X., González-Audícana, M., Fors, O., Núnez, J.: Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods. IEEE Trans. Geosc. Rem. Sens. 43, 2376–2385 (2005)
Wald, L.: Data fusion - Definitions and Architectures - Fusion of Images of Different Spatial Resolutions. École de Mines de Paris (2002)
Zhang, Y.: Automatic image fusion – A new sharpening technique for Ikonos multispectral images. GIM International, 54–57 (2002)
Alparone, L., Aiazzi, B., Baronti, S., Garzelli, A., Nencini, F.: A critical review of fusion methods for true colour display of very high resolution images of urban areas. In: Proc. EARSeL Workshop Urb. Rem. Sens., Berlin, Germany, CD (2006)
Gungor, O., Shan, J.: An optimal fusion approach for optical and SAR images. In: Proc. ISPRS Comm. VII Symp., Enschede, Netherlands, CD (2006)
Yunhao, C., Lei, D., Jing, L., Xiaobing, L., Peijun, S.: A new wavelet-based image fusion method for remotely sensed data. Int. J. Rem. Sens. 27, 1465–1476 (2006)
Ehlers, M., Klonus, S., Åstrand, P.J.: Quality assessment for multi-sensor multi-date image fusion. In: Proc. XXIth Int. Congr. ISPRS, Beijing, China, pp. 499–506 (2008)
Ling, Y., Ehlers, M., Usery, L., Madden, M.: FFT-enhanced IHS transform method for fusing high-resolution satellite images. ISPRS J. Phot. & Rem. Sens. 61, 381–392 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ehlers, M. (2008). Multi-image Fusion in Remote Sensing: Spatial Enhancement vs. Spectral Characteristics Preservation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89646-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-89646-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89645-6
Online ISBN: 978-3-540-89646-3
eBook Packages: Computer ScienceComputer Science (R0)