[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Gabor Quotient Image for Face Recognition under Varying Illumination

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5359))

Included in the following conference series:

Abstract

In this paper, we introduce a novel concept of illumination normalization for robust face recognition under different illumination conditions. The concept is extended from the Self Quotient Image (SQI) by which the 2D Gabor filter is applied instead of weighted Gaussian filter in order to increase more efficiency of the face recognition. Our experimental result, which is conducted on Yale face database B, has shown that our proposed method reached a very high recognition rate even in the case of extreme varying illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  2. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Analysis and Machine Intelligence 20, 71–86 (1997)

    Google Scholar 

  3. Wiskott, L., Fellous, J., Kruger, N., Mals-burg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Analysis and Machine Intelligence 19, 775–779 (1997)

    Article  Google Scholar 

  4. Guo, G., Li, S., Chan, K.: Face recognition by support vector machines. In: Proc. of IEEE Automatic Face and Gesture Recognition, pp. 196–201 (2000)

    Google Scholar 

  5. Adini, Y., Moses, Y., Ullman, S.: Face recognition: The problem of compensating for changes in illumination direction. IEEE Trans. Pattern Analysis and Machine Intelligence 19, 721–732 (1997)

    Article  Google Scholar 

  6. Zhao, W., Chellappa, R.: Robust face recognition using symmetric shape from shading. In: Technical report, Center for Automation Research, University of Maryland (1999)

    Google Scholar 

  7. Shashua, A., Riklin-Raviv, T.: The quotient image: Class-based re-rendering and recognition with varying illuminations. IEEE Trans. Pattern Analysis and Machine Intelligence 23, 129–139 (2001)

    Article  Google Scholar 

  8. Wang, H., Li, S., Wang, Y.: Generalized quotient image. In: Proc. of IEEE Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  9. Wang, H., Li, S., Wang, Y.: Face recognition under varying lighting conditions using self quotient image. In: Proc. of IEEE Automatic Face and Gesture Recognition (2004)

    Google Scholar 

  10. Chen, T., Yin, W., Zhou, X.S., Comaniciu, D., Huang, T.S.: Illumination normalization for face recognition and uneven background correction using total variation based image models. In: Proc. of IEEE Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  11. Chen, T., Yin, W., Zhou, X.S., Comaniciu, D., Huang, T.S.: Total variation models for variable lighting face recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 28, 1519–1524 (2006)

    Article  Google Scholar 

  12. Alizadeh, F., Goldfarb, D.: Second order cone programming. Math. Programming 95, 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, J., Wu, L., He, X., Tian, J.: A new method of illumination invariant face recognition. In: Proc. of International Conference on Innovative Computing (2007)

    Google Scholar 

  14. Jobson, D.J., Rahman, Z.: Properties and performance of a center/surround retinex. IEEE Trans. on Image Processing 6, 451–462 (1997)

    Article  Google Scholar 

  15. Daugman, J.: Complete discrete 2-d gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoustics, Speech, and Signal Processing 36, 1169–1179 (1988)

    Article  MATH  Google Scholar 

  16. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Analysis and Machine Intelligence 23, 643–660 (2001)

    Article  Google Scholar 

  17. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

    Google Scholar 

  18. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (clahe) for real-time image enhancement. J. VLSI Signal Processing System 38, 35–44 (2004)

    Article  Google Scholar 

  19. Shan, S., Gao, W., Cao, B., Zhao, D.: Illumination normalization for robust face recognition against varying lighting conditions. In: Proc. of IEEE International Workshop on Analysis and Modeling of Faces and Gestures, Washington, DC, USA, p. 157 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Srisuk, S., Petpon, A. (2008). A Gabor Quotient Image for Face Recognition under Varying Illumination. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89646-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89646-3_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89645-6

  • Online ISBN: 978-3-540-89646-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics