[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Integration of Local Image Cues for Probabilistic 2D Pose Recovery

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5359))

Included in the following conference series:

Abstract

A novel probabilistic formulation for 2-D human pose recovery from monocular images is proposed. It relies on a bottom-up approach based on an iterative process between clustering and body model fitting. Body parts are segmented from the foreground by clustering a set of images cues. Clustering is driven by 2D human body model fitting to obtain optimal segmentation while the model is resized and its articulated configuration is updated according to the clustering result. This method neither requires a training stage, nor any prior knowledge of poses and appearance as characteristics of body parts are already embedded in the integrated cues. Furthermore, a probabilistic confidence measure is proposed to evaluate the expected accuracy of recovered poses. Experimental results demonstrate the accuracy and robustness of this new algorithm by estimating 2-D human poses from walking sequences.

This work was partially supported by the EPSRC sponsored MEDUSA, PROCESS and REVEAL projects (Grant No. EP/E001025/1, EP/E033288 and GR/S98443/01 respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Elgammal, A., Lee, C.S.: Inferring 3D body pose from silhouettes using activity manifold Learning. In: CVPR (2), pp. 681–688 (2004)

    Google Scholar 

  2. Spencer, N., Carter, J.: Towards pose invariant gait reconstruction ICIP (2), pp. 261–264 (2005)

    Google Scholar 

  3. Kuo, P., Nebel, J.-C., Makris, D.: Camera Auto-Calibration from Articulated Motion AVSS, pp. 135–140 (2007)

    Google Scholar 

  4. Armstrong, M., Zisserman, A., Hartley, R.: Self-Calibration from image triplets. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 1–16. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  5. Gavrila, D.M.: The visual analysis of human movement: A survey. Journal of computer Vision and Image Understanding 73(1), 82–98 (1999)

    Article  MATH  Google Scholar 

  6. Srinivasan, P., Shi, J.: Bottom-up recognition and parsing of the human body CVPR, pp. 1–8 (2007)

    Google Scholar 

  7. Ren, X., Berg, A.C., Malik, J.: Recovering human body configurations using pairwise constraints. In: ICCV, pp. 824–831 (2005)

    Google Scholar 

  8. Ramanan, D., Forsyth, D.A.: Finding and traking people from the bottom up CVPR (2), pp. 467–474 (2003)

    Google Scholar 

  9. Mori, G., Ren, X., Efros, A.A., Malik, J. (eds.): Recovering human body configurations: Combing segmentation and recognition CVPR (2), pp. 326–333 (2004)

    Google Scholar 

  10. Sigal, L., Black, M.J.: Predicting 3D people from 2D pictures. In: AMDO (2006)

    Google Scholar 

  11. Wang, Y., Mori, G.: Boosted multiple deformable trees for parsing human poses. In: HUMO, pp. 16–27 (2007)

    Google Scholar 

  12. Hua, G., Yang, M.H., Wu, Y.: Learning to estimate human poses with data driven belief propagation. In: CVPR (2), pp. 747–754 (2005)

    Google Scholar 

  13. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. In: IJCV, pp. 55–79 (2005)

    Google Scholar 

  14. Ramanan, D.: Learning to parse images of articulated bodies. In: NIPS (2007)

    Google Scholar 

  15. Sigal, L., Black, M.J.: Measure locally, reason globally: Occlusion-sensitive articulated pose estimation. In: CVPR (2), pp. 2041–2048 (2006)

    Google Scholar 

  16. Yang, H.D., Lee, S.W.: Reconstructing 3D human body pose from stereo image sequences using hierarchical human body model learning. In: ICPR (3), pp. 1004–1007 (2006)

    Google Scholar 

  17. Ramanan, D., Forsyth, D.A., Zisserman, A.: Strike a pose: Tracking people by finding stylized poses. In: CVPR (1), pp. 271–278 (2006)

    Google Scholar 

  18. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Imaging understanding workshop, pp. 121–130 (1981)

    Google Scholar 

  19. Hartigan, J.A., Wong, M.A.: A K-means clustering algorithm. Applied Statistics 28(1), 100–108 (1979)

    Article  MATH  Google Scholar 

  20. Da Vinci, L.: Description of "Vitruvian Man" 1492

    Google Scholar 

  21. Zhao, T., Nevatia, R.: Bayesian human segmentation in crowded situations. In: CVPR (2), pp. 459–466 (2003)

    Google Scholar 

  22. Hu, C., Ma, X., Dai, X.: A Robust person tracking and following approach for mobile robot. In: International Conf. on Mechatronics and Automation, pp. 3571–3576 (2007)

    Google Scholar 

  23. Fritsch, J., Kleinehagenbrock, M., Lang, S., Fink, G.A., Sagerer, G.: Audiovisual person tracking with a mobile robot. In: IAS, pp. 898–906 (2004)

    Google Scholar 

  24. Mckenna, S.J., Raja, Y., Gong, S.: Tracking colour objects using adaptive mixture models. Image and Vision Computing (17), 231–255 (1999)

    Google Scholar 

  25. Martinez-del-Rincon, J., Nebel, J.-C., Makris, D., Orrite, C.: Tracking Human Body Parts Using Particle Filters Constrained by Human Biomechanics. In: BMVC 2008 (2008)

    Google Scholar 

  26. HumanEVA dataset. Brown University, http://vision.cs.brown.edu/humaneva

  27. Sigal, L., Black, M.J.: HumanEva: Synchronized video and motion capture dataset for evaluation of articulated human motion, Tech. Report CS0608, Brown Univ. (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuo, P., Makris, D., Megherbi, N., Nebel, JC. (2008). Integration of Local Image Cues for Probabilistic 2D Pose Recovery. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89646-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89646-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89645-6

  • Online ISBN: 978-3-540-89646-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics