[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Accumulator-Based Approach to Shape Recognition

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5359))

Included in the following conference series:

Abstract

An algorithm is presented which uses evidence accumulation to perform shape recognition. Because it uses accumulators, noise and isotropic measurement errors tend to average out. Furthermore, such methods are intrinsically parallel. It is demonstrated to perform better than any competing technique, and is particularly robust under partial occlusion. Its performance is demonstrated in applications of silhouette and face recognition using only edges and in solving the correspondence problem for image registration. The method uses only biologically-reasonable computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbasi, S.: Squid database (1996), http://www.ee.surrey.ac.uk/CVSSP/demos/css/demo.html

  2. Ballard, D.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13(2) (1981)

    Google Scholar 

  3. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. In Technical Report UCB//CSD00 -1128. UC Berkeley (January 2001)

    Google Scholar 

  4. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE PAMI 24(4) (April 2002)

    Google Scholar 

  5. Coeurjolly, D., Miguet, S., Tougne, L.: Discrete curvature based on osculating circle estimation. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, p. 303. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Coeurjolly, D., Svensson, S.: Estimation of curvature along curves with application to fibres in 3d images of paper. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 247–254. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Debled-Rennesson, J.-P., Reveilles, I.: A linear algorithm for segmentation of digital curves. International Journal of Pattern Recognition and Artificial Intelligence 9(4), 635–662 (1995)

    Article  Google Scholar 

  8. Hough, P.V.C.: Method and means for recognizing complex patterns. U.S. Patent, 3069654 (1962)

    Google Scholar 

  9. Kovalevsky, V.A.: New definition and fast recognition of digital straight segments and arcs. In: 10th International Conference on Pattern Recognition, 1990. Proceedings, June 16-21, 1990, vol. 2, pp. 31–34 (1990)

    Google Scholar 

  10. Kovesi, P.D.: Invariant Measures of Image Features from Phase Information, PhD thesis. The University of Western Australia (1996)

    Google Scholar 

  11. Kovesi, P.D.: Edges are not just steps. In: Proc. of the Fifth Asian Conference on Computer Vision, pp. 822–827 (2002)

    Google Scholar 

  12. Lam, L., Lee, S.-W., Suen, C.Y.: Thinning methodologies-a comprehensive survey. IEEE PAMI 14(9), 869–885 (1992)

    Article  Google Scholar 

  13. Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2) (1998)

    Google Scholar 

  14. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 20 (2003)

    Google Scholar 

  15. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. of the International Conference on Computer Vision ICCV (1999)

    Google Scholar 

  16. Hu, M.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8 (1962)

    Google Scholar 

  17. Mikolajczyk, C., Schmidt, K.: Indexing based on scale invariant interest points. In: Eighth IEEE International Conference on Computer Vision. IEEE, Los Alamitos (2001)

    Google Scholar 

  18. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE PAMI 27(10) (2005)

    Google Scholar 

  19. Mokhtarian, F., Abbasi, S., Kittler, J.: Efficient and robust retrieval by shape through curvature scale space. In: Proceedings of the First International Workshop on Image Databases and Multi-Media Search, pp. 35–42 (August 1996)

    Google Scholar 

  20. Veltkamp, R., Hagedoorn, M.: State-of-the-art in shape matching. Technical Report UU-CS-1999-27, Utrecht University, the Netherlands (1999)

    Google Scholar 

  21. Zhang, D., Lu, G.: A comparative study of curvature scale space and fourier descriptors for shape-based image retrieval. Journal of Visual Communication and Image Representation 14(1), 39–57 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krish, K., Snyder, W. (2008). A New Accumulator-Based Approach to Shape Recognition. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89646-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89646-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89645-6

  • Online ISBN: 978-3-540-89646-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics