[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Satellite Image Segmentation Using Wavelet Transforms Based on Color and Texture Features

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5359))

Included in the following conference series:

Abstract

Image segmentation is a fundamental process in remote sensing applications, whose main purpose is to allow a meaningful discrimination among constituent regions of interest. This work presents a novel image segmentation method based on wavelet transforms for extracting a number of color and texture features from the images. Traditional feature extraction techniques based on individual pixels usually demand high computational cost. To reduce such computational cost, while achieving high-quality results, our approach is composed of two main stages. Initially, the image is decomposed into blocks of pixels and a wavelet transform is applied to each block to identify homogeneous regions of the image, assigning the entire block to a class. A refinement stage is applied to the remaining pixels which belong to blocks marked as heterogenous in the first stage. The developed method, tested on several remote sensing images and compared to a well known image segmentation method, presents high adaptability to image regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, Hoboken (2000)

    MATH  Google Scholar 

  2. Deng, Y., Manjunath, B.S.: Unsupervised segmentation of color-texture regions in images and video. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 800–810 (2001)

    Article  Google Scholar 

  3. Boykov, Y., Funka-Lea, G.: Graph Cuts and Efficient N-D Image Segmentation. International Journal of Computer Vision 70, 109–131 (2006)

    Article  Google Scholar 

  4. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: Interactive Foreground Extraction using Iterated Graph Cuts. ACM Transactions on Graphics 23, 309–314 (2004)

    Article  Google Scholar 

  5. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000)

    Google Scholar 

  6. Schwartz, W.R., Pedrini, H.: Color Textured Image Segmentation Based on Spatial Dependence Using 3D Co-occurrence Matrices and Markov Random Fields. In: 15th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen, Czech Republic, pp. 81–87 (2007)

    Google Scholar 

  7. Cheng, Y.C., Chen, S.Y.: Image Classification Using Color, Texture and Regions. Image and Vision Computing 21, 759–776 (2003)

    Article  Google Scholar 

  8. Liapis, S., Sifakis, E., Tziritas, G.: Colour and Texture Segmentation Using Wavelet Frame Analysis, Deterministic Relaxation, and Fast Marching Algorithms. Journal of Visual Communication and Image Representation 15, 1–26 (2004)

    Article  Google Scholar 

  9. Russ, J.C.: The Image Processing Handbook. CRC Press and IEEE Press, Boca Raton (1998)

    MATH  Google Scholar 

  10. Arivazhagan, S., Ganesan, L.: Texture Classification Using Wavelet Transform. Pattern Recognition Letters 24, 1513–1521 (2003)

    Article  MATH  Google Scholar 

  11. Idrissa, M., Acheroy, M.: Texture Classification Using Gabor Filters. Pattern Recognition Letters 23, 1095–1102 (2002)

    Article  MATH  Google Scholar 

  12. Singh, M., Singh, S.: Spatial Texture Analysis: A Comparative Study. In: International Conference on Pattern Recognition, vol. 1, pp. 676–679 (2002)

    Google Scholar 

  13. Sun, J., Gu, D., Zhang, S., Chen, Y.: Hidden Markov Bayesian Texture Segmentation Using Complex Wavelet Transform. In: IEE Proceedings on Vision, Image and Signal Processing, vol. 151, pp. 215–223 (2004)

    Google Scholar 

  14. Palm, C.: Color Texture Classification by Integrative Co-occurrence Matrices. Pattern Recognition 37, 965–976 (2004)

    Article  Google Scholar 

  15. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Reg. Conf. Series in Applied Math. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  16. Mallat, S.G.: A Theory for Multiresolution Signal Decomposition: the Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  17. Pun, C.M.: Rotation-invariant texture feature for image retrieval. Computer Vision and Image Understanding 89, 24–43 (2003)

    Article  MATH  Google Scholar 

  18. Unser, M.: Texture Classification and Segmentation Using Wavelet Frames. IEEE Transactions on Image Processing 4, 1459–1560 (1995)

    Google Scholar 

  19. Gose, E., Johnsonbaugh, R., Jost, S.: Pattern Recognition and Image Analysis. Prentice-Hall, Inc., Upper Saddle River (1996)

    Google Scholar 

  20. VisTex: Vision Texture Database (2008), http://vismod.media.mit.edu/vismod/imagery/VisionTexture/distribution.html

  21. Liu, C., Frazier, P., Kumar, L.: Comparative Assessment of the Measures of Thematic Classification Accuracy. Remote Sensing of Environment 107, 606–616 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

da Silva, R.D., Minetto, R., Schwartz, W.R., Pedrini, H. (2008). Satellite Image Segmentation Using Wavelet Transforms Based on Color and Texture Features. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89646-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89646-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89645-6

  • Online ISBN: 978-3-540-89646-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics