[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Reconstruction of Binary Images with Few Disjoint Components from Two Projections

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5359))

Included in the following conference series:

Abstract

We present a general framework for reconstructing binary images with few disjoint components from the horizontal and vertical projections. We develop a backtracking algorithm that works for binary images having components from an arbitrary class. Thus, a priori information about the components of the image to be reconstructed can be incorporated into the reconstruction process. In addition, we can keep control over the number of components which can increase the speed and accuracy of the reconstruction. Experimental results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balázs, P.: A framework for generating some discrete sets with disjoint components by using uniform distributions. Theor. Comput. Sci. (2008), doi:10.1016/j.tcs.2008.06.010

    Google Scholar 

  2. Balázs, P.: On the number of hv-convex discrete sets. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 112–123. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Balázs, P., Balogh, E., Kuba, A.: Reconstruction of 8-connected but not 4-connected hv-convex discrete sets. Disc. Appl. Math. 147, 149–168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balogh, E., Kuba, A., Dévényi, C., Del Lungo, A.: Comparison of algorithms for reconstructing hv-convex discrete sets. Lin. Alg. Appl. 339, 23–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Medians of polyominoes: A property for the reconstruction. Int. J. Imaging Systems and Techn. 9, 69–77 (1998)

    Article  Google Scholar 

  6. Brunetti, S., Daurat, A.: An algorithm reconstructing convex lattice sets. Theor. Comput. Sci. 304, 35–57 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brunetti, S., Del Lungo, A., Del Ristoro, F., Kuba, A., Nivat, M.: Reconstruction of 4- and 8-connected convex discrete sets from row and column projections. Lin. Alg. Appl. 339, 37–57 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal projections. Inform. Process. Lett. 69(6), 283–289 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Del Lungo, A.: Polyominoes defined by two vectors. Theor. Comput. Sci. 127, 187–198 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  11. Herman, G.T., Kuba, A. (eds.): Advances in Discrete Tomography and its Applications. Birkhäuser, Boston (2007)

    Google Scholar 

  12. Kuba, A.: The reconstruction of two-directionally connected binary patterns from their two orthogonal projections. Comp. Vision, Graphics, and Image Proc. 27, 249–265 (1984)

    Article  Google Scholar 

  13. Kuba, A., Balogh, E.: Reconstruction of convex 2D discrete sets in polynomial time. Theor. Comput. Sci. 283, 223–242 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Woeginger, G.W.: The reconstruction of polyominoes from their orthogonal projections. Inform. Process. Lett. 77, 225–229 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balázs, P. (2008). Reconstruction of Binary Images with Few Disjoint Components from Two Projections. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89646-3_114

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89646-3_114

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89645-6

  • Online ISBN: 978-3-540-89646-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics