Abstract
In this paper, an unsupervised classification technique is proposed for high resolution satellite imagery. The approach uses graph cuts to improve the k-means algorithm, as graph cuts introduce spatial domain information of the image that is lacking in the k-means. High resolution satellite imagery, IKONOS, and SPOT-5 have been evaluated by the proposed method, showing that graph cuts improve k-means results, which in turn show coherent and continually spatial cluster regions that could be useful for cartographic classification.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Remote Sensing and Image Interpretation. Wiley, Chichester (2003)
Atkinson, P.M.: Resolution manipulation and sub-pixel mapping. In: de Jong, S.M., van der Meer, F.D. (eds.) Remote Sensing Image Analysis: Including the Spatial Domain (Remote Sensing and Digital Image Processing), pp. 51–70. Springer, Heidelberg (2004)
Berberoglu, S., Curran, P.J.: Merging Spectral and Textural Information for Classifying Remotely Sensed Images. In: de Jong, S.M., van der Meer, F.D. (eds.) Remote Sensing Image Analysis: Including the Spatial Domain (Remote Sensing and Digital Image Processing), pp. 113–135. Springer, Heidelberg (2004)
van der Werff, H., Lucieer, A.: A contextual algorithm for detection of mineral alteration Halos with hyperspectral remote sensing. In: de Jong, S.M., van der Meer, F.D. (eds.) Remote Sensing Image Analysis: Including the Spatial Domain (Remote Sensing and Digital Image Processing), pp. 201–210. Springer, Heidelberg (2004)
Carvalbo, L.M., Acerbi, F.W., Clevers Jr., J., Fonseca, L., de Jong, S.M.: Multiscale feature extraction from images using wavelets. In: Steven, M., de Jong, S.M., van der Meer, F.D. (eds.) Remote Sensing Image Analysis: Including the Spatial Domain (Remote Sensing and Digital Image Processing), pp. 237–269. Springer, Heidelberg (2004)
Boykov, Y., Funka-Lea, G.: Graph Cuts and Efficient N-D Image Segmentation. International Journal of Computer Vision 70(2), 109–131 (2006)
Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithmsfor Energy Minimization in Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)
Kolmogorov, K., Zabih, Z.: What Energy Functions can be Minimized via Graph Cuts? IEEE Transactions on Pattern Analysis and Machine Intellegence 26(2), 147–159 (2004)
Elias, P., Feinstein, A., Shannon, C.E.: A note on the maximum flow through a network. IRS Transactions on Information Theory 2, 117–119 (1956)
Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)
Greig, D., Porteous, B., Seheult, A.: Exact Maximum A Posteriori Estimation for Binary Images, J. Royal Statistical Soc., Series B 51(2), 271–279 (1989)
Lin, M.H.: Surfaces with Occlusions from Layered Stereo. Int’l J. Computer Vision 1(2), 1–15 (1999)
Kolmogorov, V., Zabih, R.: Multi-Camera Scene Reconstruction via Graph Cuts. In: Proc. European Conf. Computer Vision, vol. 3, pp. 82–96 (2002)
Boykov, Y., Jolly, M.-P.: Interactive Organ Segmentation Using Graph Cuts. In: Proc. Medical Image Computing and Computer-Assisted Intervention, pp. 276–286 (2000)
Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. Journal of the ACM (JACM) 35(4), 921–940 (1988)
Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–655 (1998)
The Weizmann Institute of Science Faculty of Mathematics and Computer Science Computer Vision Lab, http://www.wisdom.weizmann.ac.il/~bagon/matlab.html
Richard, D.O., Hart, E., Peter y Stark David, G.: Pattern Classification. Wiley-Interscience, Hoboken (2004)
del-Toro-Almenares, A., Mihai, C., Vanhamel, I., Sahli, H.: Graph Cuts Approach to MRF Based Linear Feature Extraction in Satellite Images. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 162–171. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
López, A.A., Malpica, J.A. (2008). High Resolution Satellite Classification with Graph Cut Algorithms. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89646-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-89646-3_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89645-6
Online ISBN: 978-3-540-89646-3
eBook Packages: Computer ScienceComputer Science (R0)