[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Extension of B-Spline Curves with G 2 Continuity

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5359))

Included in the following conference series:

Abstract

This paper presents a new method for extending B-Spline curve. Cubic Bézier curve is used to construct the extending segment and G 2 continuity is used to describe the smoothness of joint point. Optimization objective functions are established based on the minimum precise exact energy and the minimum precise curvature variation of the extending curve, respectively. The degree of freedom of the extended curve is determined by minimizing the objective functions. The non-linear optimization can be transform to non-linear least-square problem which can be linearized by a Gauss-Newton iterative algorithm. New control points are computed by extending curve and original curve. The comparison of the curves with different objective functions is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Farin, G.: Curves and surfaces for computer aided geometric design[M], 4th edn. Academic Press, San Diego (1997)

    MATH  Google Scholar 

  2. Piegl, L., Tiller, W.: The NURBS book[M], 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  3. Tokuyama, Y., Konno, K.: Reparameterization of piecewise rational Bezier curves and its applications[J]. The Visual Computer 17(6), 329–336 (2001)

    MATH  Google Scholar 

  4. Shetty, S., White, P.R.: Curvature-continuous extensions for rational B-spline curves and surfaces[J]. Computer-Aided Design 23(7), 484–491 (1991)

    Article  MATH  Google Scholar 

  5. Hu, S., Chiew-Lan, Zhang, S.: An extension algorithm for B-splines by curve unclamping[J]. Computer-Aided Design 34(5), 415–419 (2002)

    Article  Google Scholar 

  6. Hartmann, E.: Parametric G n blending of curves and surfaces[J]. The Visual Computer 17(1), 1–13 (2001)

    Article  MATH  Google Scholar 

  7. Kallay, M.: A method to approximate the space curve of minimal energy and prescribed length[J]. Computer-Aided Design 19(2), 73–76 (1987)

    Article  MATH  Google Scholar 

  8. Kjellander, J.A.P.: Smoothing of cubic parametric splines[J]. Computer-Aided Design 15(5), 175–179 (1983)

    Article  Google Scholar 

  9. Lee, E.T.Y.: Energy, fairness and a counterexample[J]. Computer-Aided Design 22(1), 37–40 (1990)

    Article  MATH  Google Scholar 

  10. Poliakoff, J.F.: An improved algorithm for automatic faring of non-uniform parametric cubic splines[J]. Computer-Aided Design 28, 59–66 (1996)

    Article  MATH  Google Scholar 

  11. Kjellander, J.A.P.: Smoothing of bicubic parametric splines[J]. Computer-Aided Design 15(5), 288–293 (1983)

    Article  Google Scholar 

  12. Kaufmann, E., Klass, R.: Smoothing surface using reflection lines for families of splines[J]. Computer-Aided Design 20, 312–326 (1988)

    Article  MATH  Google Scholar 

  13. Holladay, J.D.: Smoothest curve interpolation[J]. Math. Tables Aids Computation 11, 233–243 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, C., Zhang, P., Cheng, F.: Fairing spline curves and surfaces by minimizing energy[J]. Computer-Aided Design 33(13), 913–923 (2001)

    Article  MATH  Google Scholar 

  15. Su, B., Liu, D.: Computational Geometry[M]. Science and Technology Press of Shanghai, Shanghai (1981)

    Google Scholar 

  16. Zhou, Y., Zhang, C.: Extension of the Cubic Bzier Curve with G 2 Constraint[J]. Journal of Computer-Aided Design and Computer Graphics 17(3), 425–430 (2005)

    Google Scholar 

  17. Fan, H., Zhang, C.-M., Li, J.-J.: Extension algorithm for B-splines with GC 2-continuous. Chinese Journal of Computers 28(6), 933–938 (2005)

    MathSciNet  Google Scholar 

  18. Kelley, C.T.: Iterative methods for optimization[M]. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  MATH  Google Scholar 

  19. Carmo, M.P.D.: Differential geometry of curves and surfaces[M]. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, Yf., Zhang, Cm., Gao, Ss. (2008). Extension of B-Spline Curves with G 2 Continuity. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89646-3_109

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89646-3_109

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89645-6

  • Online ISBN: 978-3-540-89646-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics