Abstract
Numismatics deals with various historical aspects of the phenomenon money. Fundamental part of a numismatists work is the identification and classification of coins according to standard reference books. The recognition of ancient coins is a highly complex task that requires years of experience in the entire field of numismatics. To date, no optical recognition system for ancient coins has been investigated successfully. In this paper, we present an extension and combination of local image descriptors relevant for ancient coin recognition. Interest points are detected and their appearance is described by local descriptors. Coin recognition is based on the selection of similar images based on feature matching. Experiments are presented for a database containing ancient coin images demonstrating the feasibility of our approach.
This work was partly supported by the European Union under grant FP6-SSP5- 044450. However, this paper reflects only the authors’ views and the European Community is not liable for any use that may be made of the information contained herein.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Duncan-Jones, R.: Money and Government in the Roman Empire. Cambridge (1994)
Fukumi, M., Omatu, S., Takeda, F., Kosaka, T.: Rotation-invariant neural pattern recognition system with application to coin recognition. IEEE Transactions on Neural Networks 3, 272–279 (1992)
Mitsukura, Y., Fukumi, M., Akamatsu, N.: Design and evaluation of neural networks for coin recognition by using ga and sa. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, vol. 5, pp. 178–183 (2000)
Davidsson, P.: Coin classification using a novel technique for learning characteristic decision trees by controlling the degree of generalization. In: Proc. of 9th Int. Conference on Industrial & Engineering Applications of Artificial Intelligence & Expert Systems (IEA/AIE 1996), pp. 403–412 (1996)
Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)
Moreno, J.M., Madrenas, J., Cabestany, J., Laúna, J.R.: Using classical and evolutive neural models in industrial applications: A case study for an automatic coin classifier. In: Biological and Artificial Computation: From Neuroscience to Neurotechnology, pp. 922–931 (1997)
Bremananth, R., Balaji, B., Sankari, M., Chitra, A.: A new approach to coin recognition using neural pattern analysis. In: Proceedings of IEEE INDICON 2005, pp. 366–370 (2005)
Khashman, A., Sekeroglu, B., Dimililer, K.: Rotated Coin Recognition Using Neural Networks. Advances in Soft Computing, vol. 41, pp. 290–297. Springer, Berlin (2007)
Huber, R., Ramoser, H., Mayer, K., Penz, H., Rubik, M.: Classification of coins using an eigenspace approach. Pattern Recognition Letters 26, 61–75 (2005)
Nölle, M., Penz, H., Rubik, M., Mayer, K.J., Holländer, I., Granec, R.: Dagobert – a new coin recognition and sorting system. In: Proc. of the 7th International Conference on Digital Image Computing - Techniques and Applications (DICTA 2003), Macquarie University, Sydney, Australia, pp. 329–338. CSIRO Publishing (2003)
van der Maaten, L.J., Poon, P.: Coin-o-matic: A fast system for reliable coin classification. In: Proc. of the Muscle CIS Coin Competition Workshop, Berlin, Germany, pp. 7–18 (2006)
Nölle, M., Rubik, M., Hanbury, A.: Results of the muscle cis coin competition 2006. In: Proceedings of the Muscle CIS Coin Competition Workshop, Berlin, Germany, pp. 1–5 (2006)
Reisert, M., Ronneberger, O., Burkhardt, H.: An efficient gradient based registration technique for coin recognition. In: Proc. of the Muscle CIS Coin Competition Workshop, Berlin, Germany, pp. 19–31 (2006)
Zaharieva, M., Kampel, M., Zambanini, S.: Image based recognition of ancient coins. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 547–554. Springer, Heidelberg (2007)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)
Murillo, A.C., Guerrero, J.J., Sagüés, C.: Surf features for efficient robot localization with omnidirectional images. In: IEEE International Conference on Robotics and Automation, pp. 3901–3907 (2007)
Loy, G., Eklundh, J.O.: Detecting symmetry and symmetric constellations of features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 508–521. Springer, Heidelberg (2006)
Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. International Journal of Computer Vision 59, 61–85 (2004)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. International Journal of Computer Vision 65, 43–72 (2005)
Schmid, C., Mohr, R., Baukhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 2, 151–172 (2000)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Conference, pp. 147–152 (1988)
Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. International Journal of Computer Vision 60, 63–86 (2004)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the Britisch Machine Vision Conference, London, vol. 1, pp. 384–393 (2002)
Lowe, D.G.: Object recognition from local schale-invariant features. In: International Conference on Computer Vision (ICCV 1999), Washington, DC, USA, vol. 2, pp. 1150–1157. IEEE Computer Society, Los Alamitos (1999)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1615–1630 (2005)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)
Stark, M., Schiele, B.: How good are local features for classes of geometric objects. In: 11th International Conference on Computer Vision (ICCV 2007), Rio de Janeiro, Brazil (2007)
Zaharieva, M., Huber-Mörk, R., Nölle, M., Kampel, M.: On ancient coin classification. In: Arnold, D., Chalmers, A., Niccolucci, F. (eds.) 8th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST 2007), Eurograpchics, pp. 55–62 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kampel, M., Zaharieva, M. (2008). Recognizing Ancient Coins Based on Local Features. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-89639-5_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89638-8
Online ISBN: 978-3-540-89639-5
eBook Packages: Computer ScienceComputer Science (R0)