[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Collaborative Approach to User Modeling for Personalized Content Recommendations

  • Conference paper
Digital Libraries: Universal and Ubiquitous Access to Information (ICADL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5362))

Included in the following conference series:

Abstract

Recommender systems, which have emerged in response to the problem of information overload, provide users with recommendations of contents that are likely to fit their needs. One notable challenge in a recommender system is the cold start problem. To address this issue, we propose a collaborative approach to user modeling for generating personalized recommendations for users. Our approach first discovers useful and meaningful patterns of users, and then enriches a personal model with collaboration from other similar users. In order to evaluate the performance of our approach, we compare experimental results with those of a probabilistic learning model, a user-based collaborative filtering, and vector space model. We present experimental results that show how our model performs better than existing work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Salton, G., Buckley, C.: Term Weighting Approaches in Automatic Text Retrieval. Information Processing and Management 24, 513–523 (1988)

    Article  Google Scholar 

  2. Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM 40, 77–87 (1997)

    Article  Google Scholar 

  3. Chen, L., Sycara, K.: WebMate: Personal Agent for Browsing and Searching. In: Proc. of the 2nd Int. Conf. on Autonomous Agents and Multi Agent Systems, pp. 132–139 (1998)

    Google Scholar 

  4. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.T.: Analysis of recommendation algorithms for e-commerce. In: Proceedings of ACM E-Commerce, pp. 158–167 (2000)

    Google Scholar 

  5. Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and Metrics for Cold Start Recommendations. In: ACM Conference on Research and Development in Information Retrieval, pp. 253–260 (2002)

    Google Scholar 

  6. Melville, P., Mooney, R.J., Nagarajan, R.: Content-Boosted Collaborative Filtering for Improved Recommendations. In: Eighteenth national conference on Artificial intelligence, pp. 187–192 (2002)

    Google Scholar 

  7. Deshpande, M., Karypis, G.: Item-based Top-N Recommendation Algorithms. ACM Transactions on Information Systems 22, 143–177 (2004)

    Article  Google Scholar 

  8. Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowledge Discovery 8, 53–87 (2004)

    Article  MathSciNet  Google Scholar 

  9. McCallum, A., Nigam, K.: A Comparison of Event Models for Naïve Bayes Text Classification. In: AAAI 1998 Workshop on Learning for Text Categorization (1998)

    Google Scholar 

  10. Flesca, S., Greco, S., Tagarelli, A., Zumpano, E.: Mining User Preferences, Page Content and Usage to Personalize Website Navigation. World Wide Web, Internet and Web Information System 8, 317–345 (2005)

    Google Scholar 

  11. Degemmis, M., Lops, S.G.: A content-collaborative recommender that exploits WordNet-based user profiles for neighborhood formation. User Modeling and User-Adapted Interaction 17, 217–255 (2007)

    Article  Google Scholar 

  12. Das, A., Datar, M., Garg, A.: Google News Personalization: Scalable Online Collaborative Filtering. In: Proceedings of the 16th international conference on World Wide Web, pp. 271–280 (2007)

    Google Scholar 

  13. Kim, H.N., Ha, I.A., Jung, J.G., Jo, G.S.: User Preference Modeling from Positive Contents for Personalized Recommendation. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 116–126. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Pazzani, M.J., Meyers, A.: NSF Research Awards Abstracts 1990-2003, http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, HN., Ha, I., Lee, SH., Jo, GS. (2008). A Collaborative Approach to User Modeling for Personalized Content Recommendations. In: Buchanan, G., Masoodian, M., Cunningham, S.J. (eds) Digital Libraries: Universal and Ubiquitous Access to Information. ICADL 2008. Lecture Notes in Computer Science, vol 5362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89533-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89533-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89532-9

  • Online ISBN: 978-3-540-89533-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics