[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tractable Quantified Constraint Satisfaction Problems over Positive Temporal Templates

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5330))

Abstract

A positive temporal template (or a positive temporal constraint language) is a relational structure whose relations can be defined over a dense linear order of rational numbers using a relational symbol ≤, logical conjunction and disjunction.

We provide a complexity characterization for quantified constraint satisfaction problems (QCSP) over positive temporal languages. The considered QCSP problems are decidable in LOGSPACE or complete for one of the following classes: NLOGSPACE, P, NP, PSPACE. Our classification is based on so-called algebraic approach to constraint satisfaction problems: we first classify positive temporal languages depending on their surjective polymorphisms and then give the complexity of QCSP for each obtained class.

The complete characterization is quite complex and does not fit into one paper. Here we prove that QCSP for positive temporal languages is either NP-hard or belongs to P and we give the whole description of the latter case, that is, we show for which positive temporal languages the problem QCSP is in LOGSPACE, and for which it is NLOGSPACE-complete or P-complete. The classification of NP-hard cases is given in a separate paper.

Work partially supported by Polish Ministry of Science and Education grant 3 T11C 042 30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  2. Bodirsky, M.: Constraint Satisfaction Problems with Infinite Domains. PhD thesis, Humboldt-Universität zu Berlin (2004), http://www2.informatik.hu-berlin.de/~bodirsky/publications/diss.html

  3. Bodirsky, M., Chen, H.: Qualitative temporal and spatial reasoning revisited. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Bodirsky, M., Chen, H.: Quantified equality constraints. In: 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), Proceedings. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  5. Bodirsky, M., Kára, J.: A fast algorithm and lower bound for temporal reasonning, http://www2.informatik.hu-berlin.de/~bodirsky/en/publications.php

  6. Bodirsky, M., Kára, J.: The complexity of equality constraint languages. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 114–126. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction problems. In: Ladner, R.E., Dwork, C. (eds.) Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 29–38. ACM, New York (2008)

    Google Scholar 

  8. Boerner, F., Bulatov, A., Jeavons, P., Krokhin, A.: Quantified constraints: Algorithms and complexity. In: Proceedings of CSL and the 8th Kurt Gödel Colloquium. LNCS. Springer, Heidelberg

    Google Scholar 

  9. Bulatov, A.A.: A dichotomy theorem for constraints on a three-element set. In: Proceedings 43rd IEEE Symposium on Foundations of Computer Science (FOCS 2002), pp. 649–658 (2002)

    Google Scholar 

  10. Charatonik, W., Wrona, M.: Quantified positive temporal constraints. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 94–108. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Cohen, D., Jeavons, P.: The complexity of constraints languages. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    Google Scholar 

  12. Feder, T., Vardi, M.Y.: Monotone monadic SNP and constraint satisfaction. In: Proceedings of 25th ACM Symposium on the Theory of Computing (STOC), pp. 612–622 (1993)

    Google Scholar 

  13. Fisher, M., Gabbay, D., Vila, L.: Handbook of Temporal Reasoning in Artificial Intelligence. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  14. Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  15. Jeavons, P.G., Cohen, D.A., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44, 527–548 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krokhin, A., Jeavons, P., Jonsson, P.: A complete classification of complexity in Allens algebra in the presence of a non-trivial basic relation. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, pp. 83–88. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  17. Möhring, R.H., Skutella, M., Stork, F.: Scheduling with and/or precedence constraints. SIAM J. Comput. 33(2), 393–415 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics. Springer, Heidelberg (2007)

    Google Scholar 

  19. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings 10th ACM Symposium on Theory of Computing, STOC 1978, pp. 216–226 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Charatonik, W., Wrona, M. (2008). Tractable Quantified Constraint Satisfaction Problems over Positive Temporal Templates. In: Cervesato, I., Veith, H., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2008. Lecture Notes in Computer Science(), vol 5330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89439-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89439-1_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89438-4

  • Online ISBN: 978-3-540-89439-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics