[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Efficient and Flexible Cluster-and-Search for CBIR

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5259))

  • 1916 Accesses

Abstract

Content-Based Image Retrieval is a challenging problem both in terms of effectiveness and efficiency. In this paper, we present a flexible cluster-and-search approach that is able to reuse any previously proposed image descriptor as long as a suitable similarity function is provided. In the clustering step, the image data set is clustered using a hybrid divisive-agglomerative hierarchical clustering technique. The obtained clusters are organized in a tree that can be traversed efficiently using the similarity function associated with the chosen image descriptors. Our experiments have shown that we can improve search-time performance by a factor of 10 or more, at the cost of small loss in effectiveness (typically less than 15%) when compared to the state-of-the-art solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antani, S., Long, R., Thoma, G.: Content-based image retrieval for large biomedical image archives. In: MEDINFO (2004)

    Google Scholar 

  2. Bhatia, S.: Hierarchical clustering for image databases. In: Intl. Conference on Electro Information Technology, pp. 6–12 (2005)

    Google Scholar 

  3. Bimbo, A.D.: Visual Information Retrieval, 1st edn. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  4. Bishop, C.: Pattern Recognition and Machine Learning, 1st edn. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  5. Thies, C., Malik, A., Keysers, D., et al.: Hierarchical feature clustering for CBIR in medical image databases. In: Medical Imaging, pp. 598–608 (2003)

    Google Scholar 

  6. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 1st edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  7. Kinoshenko, D., Mashtalir, V., Yegorova, E.: Hierarchical Partitions for Content Image Retrieval from Large-Scale Database. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS (LNAI), vol. 3587, pp. 445–455. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Shyu, M.-L., Chen, S.-C., Chen, M., et al.: A unified framework for image database clustering and CBIR. In: MMDBS, pp. 19–27 (2004)

    Google Scholar 

  9. Pass, G., Zabih, R., Miller, J.: Comparing images using color coherence vectors. In: ACMMM (1997)

    Google Scholar 

  10. Seo, J., Shneiderman, B.: Interactive Exploration of Multidimensional Microarray Data: Scatterplot Ordering, Gene Ontology Browser, and Profile Search. Phd thesis, University of Maryland, College Park (2003)

    Google Scholar 

  11. Stehling, R., Nascimento, M., Falcão, A.: An adaptive and efficient clustering-based approach for CBIR in image databases. In: IDEAS, pp. 356–365 (2001)

    Google Scholar 

  12. Stehling, R., Nascimento, M., Falcão, A.: A compact and efficient image retrieval approach based on border/interior classification. In: CIKM, pp. 102–109 (2002)

    Google Scholar 

  13. Swain, M.J., Ballard, D.H.: Color indexing. IJCV 7(1), 11–32 (1991)

    Article  Google Scholar 

  14. Wu, W., Xiong, H., Shekhar, S. (eds.): Clustering and Information Retrieval. Kluwer, Dordrecht (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rocha, A., Almeida, J., Nascimento, M.A., Torres, R., Goldenstein, S. (2008). Efficient and Flexible Cluster-and-Search for CBIR. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2008. Lecture Notes in Computer Science, vol 5259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88458-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88458-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88457-6

  • Online ISBN: 978-3-540-88458-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics