Abstract
Multicomponent sensors are more and more developed since they allow to measure simultaneously several parameters. Thus, new kind of processing have been developed for some years. In this paper, we are particularly concerned with tensor signal processing for noise removal in multidimensional images. We adapt a PARAFAC based method to remove noise from multidimensional images. Some results on hyperspectral images and comparisons with a TUCKER3 based method are given.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tucker, L.: The extension of factor analysis to three dimensional matrices. Holt, Rinehart and Winston (1964)
Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIAM Jour. on Matrix An. and Applic. 21, 1253–1278 (2000)
Lathauwer, L.D., Moor, B.D., Vandewalle, J.: On the best rank-(r 1,...,r n ) approximation of higher-order tensors. SIAM Jour. on Matrix An. and Applic. 21, 1324–1342 (2000)
Harshman, R., Lundy, M.: Research methods for multimode data analysis. Praeger (1970)
Carroll, J., Chang, C.: Analysis of individual differences in multidimensional scaling via an n-way generalization of eckart-young decomposition. Psychometrika 35, 283–319 (1970)
Kiers, H.: Towards a standardized notation and terminology in multiway analysis. Journal of Chemometrics 14, 105–122 (2000)
Rao, C., Mitra, S.: Generalized inverse of matrices and its applications. John Wiley, Chichester (1971)
Bro, R.: Multiway analysis in the food industry. Ph.D thesis, Royal Vetenary and Agricultural University, Denmark (1998)
Kroonenberg, P., Leeuw, J.D.: Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika 45, 67–69 (1980)
Muti, D., Bourennane, S.: Multidimensional filtering based on a tensor approach. Signal Processing, Elsevier 85, 2338–2353 (2005)
Bihan, N.L.: Traitement algébrique des signaux vectoriels: Application a la separation d’ondes sismiques. Ph.D thesis, INPG Grenoble (2001)
Kruskal, J.: Rank, decomposition, and uniqueness for 3-way and n-way arrays. North-Holland Publishing Co., Amsterdam (1988)
Golub, G., Loan, C.V.: Matrix computations, 3rd edn. The John Hopkins University press edition, Baltimore (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Joyeux, F., Letexier, D., Bourennane, S., Blanc-Talon, J. (2008). Multidimensional Noise Removal Method Based on PARAFAC Decomposition. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2008. Lecture Notes in Computer Science, vol 5259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88458-3_42
Download citation
DOI: https://doi.org/10.1007/978-3-540-88458-3_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88457-6
Online ISBN: 978-3-540-88458-3
eBook Packages: Computer ScienceComputer Science (R0)