[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multidimensional Noise Removal Method Based on PARAFAC Decomposition

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5259))

Abstract

Multicomponent sensors are more and more developed since they allow to measure simultaneously several parameters. Thus, new kind of processing have been developed for some years. In this paper, we are particularly concerned with tensor signal processing for noise removal in multidimensional images. We adapt a PARAFAC based method to remove noise from multidimensional images. Some results on hyperspectral images and comparisons with a TUCKER3 based method are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tucker, L.: The extension of factor analysis to three dimensional matrices. Holt, Rinehart and Winston (1964)

    Google Scholar 

  2. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIAM Jour. on Matrix An. and Applic. 21, 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: On the best rank-(r 1,...,r n ) approximation of higher-order tensors. SIAM Jour. on Matrix An. and Applic. 21, 1324–1342 (2000)

    Article  MATH  Google Scholar 

  4. Harshman, R., Lundy, M.: Research methods for multimode data analysis. Praeger (1970)

    Google Scholar 

  5. Carroll, J., Chang, C.: Analysis of individual differences in multidimensional scaling via an n-way generalization of eckart-young decomposition. Psychometrika 35, 283–319 (1970)

    Article  MATH  Google Scholar 

  6. Kiers, H.: Towards a standardized notation and terminology in multiway analysis. Journal of Chemometrics 14, 105–122 (2000)

    Article  MathSciNet  Google Scholar 

  7. Rao, C., Mitra, S.: Generalized inverse of matrices and its applications. John Wiley, Chichester (1971)

    MATH  Google Scholar 

  8. Bro, R.: Multiway analysis in the food industry. Ph.D thesis, Royal Vetenary and Agricultural University, Denmark (1998)

    Google Scholar 

  9. Kroonenberg, P., Leeuw, J.D.: Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika 45, 67–69 (1980)

    Google Scholar 

  10. Muti, D., Bourennane, S.: Multidimensional filtering based on a tensor approach. Signal Processing, Elsevier 85, 2338–2353 (2005)

    Article  MATH  Google Scholar 

  11. Bihan, N.L.: Traitement algébrique des signaux vectoriels: Application a la separation d’ondes sismiques. Ph.D thesis, INPG Grenoble (2001)

    Google Scholar 

  12. Kruskal, J.: Rank, decomposition, and uniqueness for 3-way and n-way arrays. North-Holland Publishing Co., Amsterdam (1988)

    Google Scholar 

  13. Golub, G., Loan, C.V.: Matrix computations, 3rd edn. The John Hopkins University press edition, Baltimore (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joyeux, F., Letexier, D., Bourennane, S., Blanc-Talon, J. (2008). Multidimensional Noise Removal Method Based on PARAFAC Decomposition. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2008. Lecture Notes in Computer Science, vol 5259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88458-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88458-3_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88457-6

  • Online ISBN: 978-3-540-88458-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics