[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Robust Method for Edge-Preserving Image Smoothing

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5259))

Abstract

Image smoothing is a critical preprocessing step in many image processing tasks. In this paper, a generalized edge-preserving smoothing model is derived from robust statistics theory, and its connections to anisotropic diffusion and bilateral filtering are established. The relationships allow us to derive an improved numerical scheme in the context of a robust estimation process for edge preserving smoothing. Experiments illustrate that the proposed smoothing algorithm is capable of effectively reducing the distracting effects of noise without sacrificing image edge structures. The robust edge-preserving smoothing method performs several dB better in terms of PSNR compared to anisotropic diffusion, bilateral filtering and the Bayes least squares Gaussian scale mixtures a wavelet-based methods for image enhancement.

This work was partially supported by a U.S National Institute of Health NIBIB award R33 EB00573.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marr, D.C., Hildreth, E.C.: Theory of edge detection. Proc. Roy. Soc. London B207, 187–212 (1980)

    Article  Google Scholar 

  2. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  3. Weickert, J.: Theoretical foundations of Anisotropic diffusion in image processing and computer vision. Computing 11, 221–236 (1996)

    Google Scholar 

  4. You, Y.L., Xu, W., Tannenbaum, A., Kaveh, M.: Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans. Image Processing 5, 1539–1553 (1996)

    Article  Google Scholar 

  5. Li, S.A.: Discontinuity-adaptive MRF prior and robust statistics: A comparative study. Image and Vision Computing 13, 227–233 (1995)

    Article  Google Scholar 

  6. Black, M.J., Sapiro, G., Marimont, D., Heeger, D.: Robust anisotropic diffusion. IEEE Trans. Image Processing 7, 421–432 (1998)

    Article  Google Scholar 

  7. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceeding of the IEEE International Conference on Computer Vision, pp. 59–66 (1998)

    Google Scholar 

  8. Yaroslavsky, L.P.: Digital Picture Processing-An Introduction. Springer, Heidelberg (1985)

    Book  Google Scholar 

  9. Smith, S.M., Brady, J.M.: SUSAN - a new approach to low level image processing. International Journal of Computer Vision 23, 45–78 (1997)

    Article  Google Scholar 

  10. Huber, P.J.: Robust Statistics. John Wiley and Sons, New York (1981)

    Book  MATH  Google Scholar 

  11. Tukey, J.W.: Explortary Data Analysis. Addison-Wesley, Reading (1977)

    Google Scholar 

  12. Zhuang, X., Palaniappan, K., Haralick, R.M.: Highly robust statistical methods based on minimum-error Bayesian classification. In: Chen, C.W., Zhang, Y.-Q. (eds.) Visual Information Representation, Communication and Image Processing. Optical Engineering Series, vol. 64, pp. 415–430. Marcel-Dekker, New York (1999)

    Google Scholar 

  13. Nath, S.K., Palaniappan, K.: Adaptive robust structure tensors for orientation estimation and image segmentation. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 445–453. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Palaniappan, K., Jiang, H., Baskin, T.I.: Non-rigid motion estimation using the robust tensor method. In: IEEE Computer Vision and Pattern Recognition Workshop on Articulated and Nonrigid Motion, Washington, DC, June 27, pp. 25–33. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  15. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  16. Wasserstrom, E.: Numerical solutions by the continuation method. SIAM Rev. 15, 89–119 (1973)

    Article  MathSciNet  Google Scholar 

  17. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  18. Nikolova, M.: Markovian reconstruction using a GNC approach. IEEE Trans. Image Processing 8, 1204–1220 (1999)

    Article  Google Scholar 

  19. Dong, G., Acton, S.T.: On the convergence of bilateral filter for edge-preserving image smoothing. IEEE Signal Processing Letters 14, 617–620 (2007)

    Article  Google Scholar 

  20. Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.: Image denoising using scale mixtures of Gaussian in the wavelet domain. IEEE Trans. Image Processing 12, 1338–1351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, G., Palaniappan, K. (2008). A Robust Method for Edge-Preserving Image Smoothing. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2008. Lecture Notes in Computer Science, vol 5259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88458-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88458-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88457-6

  • Online ISBN: 978-3-540-88458-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics