[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Memetic Algorithm for Intense Local Search Methods Using Local Search Chains

  • Conference paper
Hybrid Metaheuristics (HM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5296))

Included in the following conference series:

Abstract

This contribution presents a new memetic algorithm for continuous optimization problems, which is specially designed for applying intense local search methods. These local search methods make use of explicit strategy parameters to guide the search, and adapt these parameters with the purpose of producing more effective solutions. They may achieve accurate results, at the cost of requiring high intensity, making more difficult their application into a memetic algorithm. Our memetic algorithm approach assigns to each individual a local search intensity that depends on its features, by chaining different local search applications. With this technique of search chains, at each stage the local search operator may continue the operation of a previous invocation, starting from the final configuration reached by this one. The proposed memetic algorithm integrates the CMA-ES algorithm as their local search operator. We compare our proposal with other memetic algorithms and evolutionary algorithms for continuous optimization, showing that it presents a clear superiority over the compared algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  2. Goldberg, D.E., Voessner, S.: Optimizing global-local search hybrids. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference 1999, pp. 220–228. Morgan Kaufmann, San Mateo (1999)

    Google Scholar 

  3. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Technical report, Technical Report Caltech Concurrent Computation Program Report 826, Caltech, Pasadena, California (1989)

    Google Scholar 

  4. Moscato, P.: Memetic algorithms: a short introduction, pp. 219–234. McGraw-Hill, London (1999)

    Google Scholar 

  5. Merz, P.: Memetic Algorithms for Combinatorial Optimization Problems: Fitness Landscapes and Effective Search Strategies. PhD thesis, University of Siegen, Germany

    Google Scholar 

  6. Hart, W.: Adaptive Global Optimization With Local Search. PhD thesis, Univ. California, San Diego, CA (1994)

    Google Scholar 

  7. Hansen, N., Ostermeier, A.: Adapting Arbitrary Normal Mutation Distributions in Evolution Strategies: The Covariance Matrix Adaptation. In: Proceeding of the IEEE International Conference on Evolutionary Computation (ICEC 1996), pp. 312–317 (1996)

    Google Scholar 

  8. Hansen, N., Müller, S., Koumoutsakos, P.: Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation 1(11), 1–18 (2003)

    Article  Google Scholar 

  9. Hansen, N., Kern, S.: Evaluating the CMA Evolution Strategy on Multimodal Test Functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Auger, A., Hansen, N.: Performance Evaluation of an Advanced Local Search Evolutionary Algorithm. In: 2005 IEEE Congress on Evolutionary Computation, pp. 1777–1784 (2005)

    Google Scholar 

  11. Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real parameter optimization. Technical report, Nanyang Technical University (2005)

    Google Scholar 

  12. Hansen, N.: Compilation of Results on the CEC Benchmark Function Set. In: 2005 IEEE Congress on Evolutionary Computation (2005)

    Google Scholar 

  13. Auger, A., Schoenauer, M., Vanhaecke, N.: LS-CMAES: a second-order algorithm for covariance matrix adaptation. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 182–191. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Whitley, D.: The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best. In: Proc. of the Third Int. Conf. on Genetic Algorithms, pp. 116–121 (1989)

    Google Scholar 

  15. Land, M.S.: Evolutionary Algorithms with Local Search for Combinational Optimization. PhD thesis, Univ. California, San Diego, CA (1998)

    Google Scholar 

  16. Herrera, F., Lozano, M., Verdegay, J.L.: Tackling Real-coded Genetic Algorithms: Operators and Tools for the Behavioral Analysis. Artificial Intelligence Reviews 12(4), 265–319 (1998)

    Article  MATH  Google Scholar 

  17. Fernandes, C., Rosa, A.: A Study of non-Random Matching and Varying Population Size in Genetic Algorithm using a Royal Road Function. In: Proc. of the 2001 Congress on Evolutionary Computation, pp. 60–66 (2001)

    Google Scholar 

  18. Mülenbein, H., Schlierkamp-Voosen, D.: Predictive Models for the Breeding Genetic Algorithm in Continuous Parameter Optimization. Evolutionary Computation 1, 25–49 (1993)

    Article  Google Scholar 

  19. Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded Memetic Algorithms with Crossover Hill-climbing. Evolutionary Computation 12(2), 273–302 (2004)

    Article  Google Scholar 

  20. Tang, J., Lim, M., Ong, Y.: Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Computing 11(9), 873–888 (2007)

    Article  Google Scholar 

  21. García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the cec 2005 special session on real parameter optimization. Journal of Heuristics (in press, 2008)

    Google Scholar 

  22. Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local search. In: IEEE Transactions on evolutionary Computation (in press, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Molina, D., Lozano, M., García-Martínez, C., Herrera, F. (2008). Memetic Algorithm for Intense Local Search Methods Using Local Search Chains. In: Blesa, M.J., et al. Hybrid Metaheuristics. HM 2008. Lecture Notes in Computer Science, vol 5296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88439-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88439-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88438-5

  • Online ISBN: 978-3-540-88439-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics