[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cluster Analysis in Remote Sensing Spectral Imagery through Graph Representation and Advanced SOM Visualization

  • Conference paper
Discovery Science (DS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5255))

Included in the following conference series:

Abstract

The Self-Organizing Map (SOM), a powerful method for clustering and knowledge discovery, has been used effectively for remote sensing spectral images which often have high-dimensional feature vectors (spectra) and many meaningful clusters with varying statistics. However, a learned SOM needs postprocessing to identify the clusters, which is typically done interactively from various visualizations. What aspects of the SOM’s knowledge are presented by a visualization has great importance for cluster capture. We present our recent scheme, CONNvis, which achieves detailed delineation of cluster boundaries by rendering data topology on the SOM lattice. We show discovery through CONNvis clustering in a remote sensing spectral image from the Mars Exploration Rover Spirit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ultsch, A.: Self-organizing neural networks for visualization and classification. In: Lausen, O.B., Klar, R. (eds.) Information and Classification-Concepts, Methods and Applications, pp. 307–313. Springer, Berlin (1993)

    Google Scholar 

  2. Kraaijveld, M.A., Mao, J., Jain, A.K.: A nonlinear projection method based on Kohonen’s topology preserving maps. IEEE Trans. on Neural Networks 6(3), 548–559 (1995)

    Article  Google Scholar 

  3. Ultsch, A.: Maps for the visualization of high-dimensional data spaces. In: Proc. 4th Workshop on Self-Organizing Maps (WSOM 2003), vol. 3, pp. 225–230 (2003)

    Google Scholar 

  4. Merényi, E., Jain, A.: Forbidden magnification? II.. In: Proc. 12th European Symposium on Artificial Neural Networks (ESANN 2004), Bruges, Belgium, D-Facto, April 28-30, 2004, pp. 57–62 (2004)

    Google Scholar 

  5. Cottrell, M., de Bodt, E.: A Kohonen map representation to avoid misleading interpretations. In: Proc. 4th European Symposium on Artificial Neural Networks (ESANN 1996), Bruges, Belgium, D-Facto, pp. 103–110 (1996)

    Google Scholar 

  6. Hakkinen, E., Koikkalainen, P.: The neural data analysis environment. In: Proc. 1st Workshop on Self-Organizing Maps (WSOM 1997), Espoo, Finland, June 4-6, 1997, pp. 69–74 (1997)

    Google Scholar 

  7. Merkl, D., Rauber, A.: Alternative ways for cluster visualization in Self-Organizing Maps. In: Proc. 1st Workshop on Self-Organizing Maps (WSOM 2005), June 4-6, pp. 106–111. Helsinki University of Technology, Neural Networks Research Centre, Espoo (1997)

    Google Scholar 

  8. Su, M.-C., Chang, H.-T.: A new model of self-organizing neural networks and its applications. IEEE Transactions on Neural Networks 12(1), 153–158 (2001)

    Article  Google Scholar 

  9. Yin, H.: ViSOM- A novel Method for Multivariate Data Projection and Structure Visualization. IEEE Transactions on Neural Networks 13(1), 237–243 (2002)

    Article  Google Scholar 

  10. Villmann, T., Merényi, E.: Extensions and modifications of the Kohonen SOM and applications in remote sensing image analysis. In: Seiffert, U., Jain, L.C. (eds.) Self-Organizing Maps: Recent Advances and Applications, pp. 121–145. Springer, Heidelberg (2001)

    Google Scholar 

  11. Himberg, J.: A SOM based cluster visualization and its application for false colouring. In: Proc. IEEE-INNS-ENNS International Joint Conf. on Neural Networks, Como, Italy, vol. 3, pp. 587–592 (2000)

    Google Scholar 

  12. Kaski, S., Kohonen, T., Venna, J.: Tips for SOM processing and colourcoding of maps. In: Deboeck, T.K.G. (ed.) Visual Explorations in Finance Using Self-Organizing Maps, London (1998)

    Google Scholar 

  13. Kaski, S., Venna, J., Kohonen, T.: Coloring that reveals cluster structures in multivariate data. Australian Journal of Intelligent Information Processing Systems 6, 82–88 (2000)

    Google Scholar 

  14. Vesanto, J.: SOM-based data visualization methods. Intelligent Data Analysis 3(2), 111–126 (1999)

    Article  MATH  Google Scholar 

  15. Taşdemir, K., Merényi, E.: Exploiting data topology in visualization and clustering of Self-Organizing Maps. IEEE Transactions on Neural Networks (submitted, 2007)

    Google Scholar 

  16. Taşdemir, K., Merényi, E.: Data topology visualization for the Self-Organizing Maps. In: Proc. 14th European Symposium on Artificial Neural Networks (ESANN 2006), Bruges, Belgium, D-Facto, April 26-28, 2006, pp. 277–282 (2006)

    Google Scholar 

  17. Martinetz, T., Schulten, K.: Topology representing networks. Neural Networks 7(3), 507–522 (1993)

    Article  Google Scholar 

  18. Ultsch, A.: Clustering with som: U*c. In: Proc. 5th Workshop on Self-Organizing Maps (WSOM 2005), Paris, France, September 5-8, 2005, pp. 75–82 (2005)

    Google Scholar 

  19. Squyres, S.W., Arvidson, R.E., Blaney, D.L., Clark, B.C., Crumpler, L., Farrand, W.H., Gorevan, S., Herkenhoff, K.E., Hurowitz, J., Kusack, A., McSween, H.Y., Ming, D.W., Morris, R.V., Ruff, S.W., Wang, A., Yen, A.: The rocks of the columbia hills. Journal of Geophys. Res.: Planets 111, E02S11, 10.1029/2005JE002562

    Google Scholar 

  20. Farrand, W.H., Bell III, J.F., Johnson, J.R., Squyres, S.W., Soderblom, J., Ming, D.W.: Spectral variability among rocks in visible and near infrared multispectral pancam data collected at gusev crater: Examinations using spectral mixture analysis and related techniques. Journal of Geophys. Res.: Planets 111, E02S15, 10.1029/2005JE002495

    Google Scholar 

  21. Farrand, W.H., Bell III, J.F., Johnson, J.R., Blaney, D.L.: Multispectral reflectance of rocks in the columbia hills examined by the mars exploration rover spirit: Cumberland ridge to home plate. Lunar and Planeary. Science XXXVIII (1957)

    Google Scholar 

  22. Ruff, S.W., Christensen, P.R., Blaney, D.L., Farrand, W.H., Johnson, J.R., Moersch, J.E., Wright, S.P., Squyres, S.W.: The rocks of guser crater as viewed by the mini-tes instrument. Journal of Geophys. Res.: Planets 111, E12S18, 10,1029/2006JE002747

    Google Scholar 

  23. Herkenhoff, K.E., Squyres, S., Arvidson, R.: The Athena Science Team, Overview of recent athena microscopic imager results. In: Lunar and Planetary Science XXXVIII, abstract 1421 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this paper

Cite this paper

Taşdemir, K., Merényi, E. (2008). Cluster Analysis in Remote Sensing Spectral Imagery through Graph Representation and Advanced SOM Visualization. In: Jean-Fran, JF., Berthold, M.R., Horváth, T. (eds) Discovery Science. DS 2008. Lecture Notes in Computer Science(), vol 5255. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88411-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88411-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88410-1

  • Online ISBN: 978-3-540-88411-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics