Abstract
The Self-Organizing Map (SOM), a powerful method for clustering and knowledge discovery, has been used effectively for remote sensing spectral images which often have high-dimensional feature vectors (spectra) and many meaningful clusters with varying statistics. However, a learned SOM needs postprocessing to identify the clusters, which is typically done interactively from various visualizations. What aspects of the SOM’s knowledge are presented by a visualization has great importance for cluster capture. We present our recent scheme, CONNvis, which achieves detailed delineation of cluster boundaries by rendering data topology on the SOM lattice. We show discovery through CONNvis clustering in a remote sensing spectral image from the Mars Exploration Rover Spirit.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ultsch, A.: Self-organizing neural networks for visualization and classification. In: Lausen, O.B., Klar, R. (eds.) Information and Classification-Concepts, Methods and Applications, pp. 307–313. Springer, Berlin (1993)
Kraaijveld, M.A., Mao, J., Jain, A.K.: A nonlinear projection method based on Kohonen’s topology preserving maps. IEEE Trans. on Neural Networks 6(3), 548–559 (1995)
Ultsch, A.: Maps for the visualization of high-dimensional data spaces. In: Proc. 4th Workshop on Self-Organizing Maps (WSOM 2003), vol. 3, pp. 225–230 (2003)
Merényi, E., Jain, A.: Forbidden magnification? II.. In: Proc. 12th European Symposium on Artificial Neural Networks (ESANN 2004), Bruges, Belgium, D-Facto, April 28-30, 2004, pp. 57–62 (2004)
Cottrell, M., de Bodt, E.: A Kohonen map representation to avoid misleading interpretations. In: Proc. 4th European Symposium on Artificial Neural Networks (ESANN 1996), Bruges, Belgium, D-Facto, pp. 103–110 (1996)
Hakkinen, E., Koikkalainen, P.: The neural data analysis environment. In: Proc. 1st Workshop on Self-Organizing Maps (WSOM 1997), Espoo, Finland, June 4-6, 1997, pp. 69–74 (1997)
Merkl, D., Rauber, A.: Alternative ways for cluster visualization in Self-Organizing Maps. In: Proc. 1st Workshop on Self-Organizing Maps (WSOM 2005), June 4-6, pp. 106–111. Helsinki University of Technology, Neural Networks Research Centre, Espoo (1997)
Su, M.-C., Chang, H.-T.: A new model of self-organizing neural networks and its applications. IEEE Transactions on Neural Networks 12(1), 153–158 (2001)
Yin, H.: ViSOM- A novel Method for Multivariate Data Projection and Structure Visualization. IEEE Transactions on Neural Networks 13(1), 237–243 (2002)
Villmann, T., Merényi, E.: Extensions and modifications of the Kohonen SOM and applications in remote sensing image analysis. In: Seiffert, U., Jain, L.C. (eds.) Self-Organizing Maps: Recent Advances and Applications, pp. 121–145. Springer, Heidelberg (2001)
Himberg, J.: A SOM based cluster visualization and its application for false colouring. In: Proc. IEEE-INNS-ENNS International Joint Conf. on Neural Networks, Como, Italy, vol. 3, pp. 587–592 (2000)
Kaski, S., Kohonen, T., Venna, J.: Tips for SOM processing and colourcoding of maps. In: Deboeck, T.K.G. (ed.) Visual Explorations in Finance Using Self-Organizing Maps, London (1998)
Kaski, S., Venna, J., Kohonen, T.: Coloring that reveals cluster structures in multivariate data. Australian Journal of Intelligent Information Processing Systems 6, 82–88 (2000)
Vesanto, J.: SOM-based data visualization methods. Intelligent Data Analysis 3(2), 111–126 (1999)
Taşdemir, K., Merényi, E.: Exploiting data topology in visualization and clustering of Self-Organizing Maps. IEEE Transactions on Neural Networks (submitted, 2007)
Taşdemir, K., Merényi, E.: Data topology visualization for the Self-Organizing Maps. In: Proc. 14th European Symposium on Artificial Neural Networks (ESANN 2006), Bruges, Belgium, D-Facto, April 26-28, 2006, pp. 277–282 (2006)
Martinetz, T., Schulten, K.: Topology representing networks. Neural Networks 7(3), 507–522 (1993)
Ultsch, A.: Clustering with som: U*c. In: Proc. 5th Workshop on Self-Organizing Maps (WSOM 2005), Paris, France, September 5-8, 2005, pp. 75–82 (2005)
Squyres, S.W., Arvidson, R.E., Blaney, D.L., Clark, B.C., Crumpler, L., Farrand, W.H., Gorevan, S., Herkenhoff, K.E., Hurowitz, J., Kusack, A., McSween, H.Y., Ming, D.W., Morris, R.V., Ruff, S.W., Wang, A., Yen, A.: The rocks of the columbia hills. Journal of Geophys. Res.: Planets 111, E02S11, 10.1029/2005JE002562
Farrand, W.H., Bell III, J.F., Johnson, J.R., Squyres, S.W., Soderblom, J., Ming, D.W.: Spectral variability among rocks in visible and near infrared multispectral pancam data collected at gusev crater: Examinations using spectral mixture analysis and related techniques. Journal of Geophys. Res.: Planets 111, E02S15, 10.1029/2005JE002495
Farrand, W.H., Bell III, J.F., Johnson, J.R., Blaney, D.L.: Multispectral reflectance of rocks in the columbia hills examined by the mars exploration rover spirit: Cumberland ridge to home plate. Lunar and Planeary. Science XXXVIII (1957)
Ruff, S.W., Christensen, P.R., Blaney, D.L., Farrand, W.H., Johnson, J.R., Moersch, J.E., Wright, S.P., Squyres, S.W.: The rocks of guser crater as viewed by the mini-tes instrument. Journal of Geophys. Res.: Planets 111, E12S18, 10,1029/2006JE002747
Herkenhoff, K.E., Squyres, S., Arvidson, R.: The Athena Science Team, Overview of recent athena microscopic imager results. In: Lunar and Planetary Science XXXVIII, abstract 1421 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer Berlin Heidelberg
About this paper
Cite this paper
Taşdemir, K., Merényi, E. (2008). Cluster Analysis in Remote Sensing Spectral Imagery through Graph Representation and Advanced SOM Visualization. In: Jean-Fran, JF., Berthold, M.R., Horváth, T. (eds) Discovery Science. DS 2008. Lecture Notes in Computer Science(), vol 5255. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88411-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-88411-8_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88410-1
Online ISBN: 978-3-540-88411-8
eBook Packages: Computer ScienceComputer Science (R0)