[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Application of Evolutionary Algorithms for Solving Multi-Objective Simulation Optimization Problems

  • Chapter
Multi-Objective Memetic Algorithms

Part of the book series: Studies in Computational Intelligence ((SCI,volume 171))

  • 1354 Accesses

Introduction

Most optimization problems associated with real-world complex systems are too difficult to bemodeled analytically. The difficulty may come from the uncertainties involved in the input and output of the system, the complex (often nonlinear) relationships between the system decision variables and the system performances, and possible multiple, conflicting performance measures to be considered when choosing the best design. In light of this, discrete event simulation has become one of the most popular tools for the analysis and design of complex systems due to its flexibility, its ability to model systems unable to be modeled through analytical methods, and its ability to model the time dynamic behavior of systems [1]. However, simulation can only evaluate system performances for a given set of values of the system decision variables, i.e., it lacks the ability of searching for optimal values which would optimize one or several responses of the system. This explains the increasing popularity of research in integrating both simulation and optimization, known as simulation optimization: the process of finding the best values of decision variables for a system where the performance is evaluated based on the output of a simulation model of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mollaghasemi, M., Evans, G.W.: Multicriteria design of manufacturing systems through simulation optimization. IEEE Transactions on Systems, Man, and Cybernetics 24, 1407–1411 (1994)

    Article  Google Scholar 

  2. Pritsker, A.: Introduction to simulation and SLAM II. John Wiley and Sons, New York (1986)

    Google Scholar 

  3. Swisher, J.R., Jacobson, S.H., Yücesan, E.: Discrete-event simulation optimization using ranking, selection, and multiple comparison procedures: A survey. ACM Transactions on Modeling and Computer Simulation 13, 134–154 (2003)

    Article  Google Scholar 

  4. Nelson, B.L., Swann, J., Goldsman, D., Song, W.M.: Simple procedures for selecting the best simulated system when the number of alternatives is large. Operations Research 49, 950–963 (2001)

    Article  Google Scholar 

  5. Chen, C.H., Lin, J.W., Yücesan, E., Chick, S.E.: Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discrete Event Dynamic Systems: Theory and Applications 10, 251–270 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chick, S.E., Inoue, K.: New two-stage and sequential procedures for selecting the best simulated system. Operations Research 49, 732–743 (2001)

    Article  Google Scholar 

  7. Boesel, J., Nelson, B.L., Ishii, N.: A framework for simulation-optimization software. IIE Transactions 35, 221–229 (2003)

    Article  Google Scholar 

  8. Hedlund, H.E., Mollaghasemi, M.: A genetic algorithm and an indifference-zone ranking and selection framework for simulation optimization. In: Proceedings of the 2001 Winter Simulation Conference, pp. 417–421 (2001)

    Google Scholar 

  9. Alkhamis, T.M., Ahmed, M.A.: Simulation-based optimization using simulated annealing with confidence interval. In: Proceedings of the 2004 Winter Simulation Conference, pp. 514–519 (2004)

    Google Scholar 

  10. Ahmed, M.A., Alkhamis, T.M.: Simulation-based optimization using simulated annealing with ranking and selection. Computers and Operations Research 29, 387–402 (2002)

    Article  MATH  Google Scholar 

  11. Ólafsson, S.: Iterative ranking-and-selection for large-scale optimization. In: Proceedings of the, Winter Simulation Conference, pp. 479–485 (1999)

    Google Scholar 

  12. Chen, C.H., He, D., Fu, M., Lee, L.H.: Efficient selection of an optimal subset for optimization under uncertainty. In: Proceedings of the 2007 INFORMS Simulation Society Research Workshop: Simulation in Decision Making, July 5-7, INSEAD, Fontainebleau, France (2007)

    Google Scholar 

  13. Steuer, R.E., Choo, E.U.: An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming 26, 326–344 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wierzbicki, A.P.: A mathematical basis for satisficing decision making. Mathematical Modelling 3, 391–405 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectrum 8, 73–87 (1986)

    MATH  MathSciNet  Google Scholar 

  16. Benayoun, R., de Montgolfier, J., Tergny, J., Larichev, O.: Linear Programming with Multiple Objective Functions: Step Method (STEM). Mathematical Programming 1, 366–375 (1972)

    Article  Google Scholar 

  17. Benson, H.P., Sayin, S.: Towards Finding Global Representations of the Efficient Set in Multiple Objective Mathematical Programming. Naval Research Logistics 44, 47–67 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Climaco, J., Antunes, C.: Implementation of a User-Friendly Software Package|A Guided Tour of TRIMAP. Mathematical and Computer Modelling 12, 1299–1309 (1989)

    Article  Google Scholar 

  19. Jaszkiewicz, A., Slowinski, R.: The Light Beam Search Approach: An Overview of Methodology and Applications. European Journal of Operational Research 113, 300–314 (1999)

    Article  MATH  Google Scholar 

  20. Korhonen, P., Wallenius, J.: A Pareto Race. Naval Research Logistics 35, 277–287 (1988)

    Article  Google Scholar 

  21. Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    Google Scholar 

  22. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423. University of Illinois at Urbana-Champaign. Morgan Kauman Publishers, San Mateo (1993)

    Google Scholar 

  23. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, pp. 82–87. IEEE Service Center, Piscataway (1994)

    Chapter  Google Scholar 

  24. Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1994)

    Article  Google Scholar 

  25. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  26. Coello Coello, C.A.: A short tutorial on evolutionary multiobjective optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, p. 21. Springer, Heidelberg (2001)

    Google Scholar 

  27. Lee, L.H., Chew, E.P., Teng, S.Y., Goldsman, D.: Optimal computing budget allocation for multi-objective simulation models. In: Ingalls, R.G., Rossetti, M.D., Smith, J.S., Peters, B.A. (eds.) Proceedings of the 2004 Winter Simulation Conference, pp. 586–594 (2004)

    Google Scholar 

  28. Lee, L.H., Chew, E.P., Teng, S.Y., Goldsman, D.: Finding the non-dominated Pareto set for multi-objective simulation models. Submitted to IIE Transactions (2005)

    Google Scholar 

  29. Baesler, F.F., Sepúlveda, J.A.: Multi-response simulation optimization using stochastic genetic search within a goal programming framework. In: Joines, J.A., Barton, R.R., Kang, K., Fishwick, P.A. (eds.) Proceedings of the 2000 Winter Simulation Conference, pp. 788–794 (2000)

    Google Scholar 

  30. Butler, J., Morrice, D.J., Mullarkey, P.W.: A multiple attribute utility theory approach to ranking and selection. Management Science 47(6), 800–816 (2001)

    Article  Google Scholar 

  31. Hammel, U., Bäck, T.: Evolution strategies on noisy functions, how to improve convergence properties. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866. Springer, Heidelberg (1994)

    Google Scholar 

  32. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

    Article  Google Scholar 

  33. Lee, L.H., Lee, C.U., Tan, Y.P.: A multi-objective genetic algorithm for robust flight scheduling using simulation. European Journal of Operational Research 177(3), 1948–1968 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hughes, E.J.: Evolutionary multi-objective ranking with uncertainty and noise. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, p. 329. Springer, Heidelberg (2001)

    Google Scholar 

  35. Goh, C.K., Tan, K.C.: An investigation on noisy environments in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation 11(3), 354–381 (2007)

    Article  Google Scholar 

  36. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum, Mahwah (1985)

    Google Scholar 

  37. Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172 (2000)

    Article  Google Scholar 

  38. Tan, K.C., Lee, T.H., Khor, E.F.: Evolutionary Algorithms With Dynamic Population Size and Local Exploration for Multiobjective Optimization. IEEE Transactions on Evolutionary Computation 5 (6), 565–588

    Google Scholar 

  39. Praditwong, K., Yao, X.: A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm. In: Wang, Y., Cheung, Y.-m., Liu, H. (eds.) CIS 2006. LNCS (LNAI), vol. 4456, pp. 95–104. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  40. Shi, L., Ólafsson, S.: Nested partitions method for global optimization. Operations Research 48(3), 390–407 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  41. Fonseca, C.M., Fleming, P.J.: Multiobjective genetic algorithms made easy: selection, sharing and mating restriction. In: Proceedings of the, international conference on Genetic algorithms in engineering systems: innovations and applications, pp. 45–52 (1995)

    Google Scholar 

  42. Deb, K., Jain, S.: Running performance metrics for evolutionary multi-objective optimizaiton. KanGal Report No. 2002004 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hay, L.L., Peng, C.E., suyan, T., juxin, L. (2009). Application of Evolutionary Algorithms for Solving Multi-Objective Simulation Optimization Problems. In: Goh, CK., Ong, YS., Tan, K.C. (eds) Multi-Objective Memetic Algorithms. Studies in Computational Intelligence, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88051-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88051-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88050-9

  • Online ISBN: 978-3-540-88051-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics